103. Synthese von enantiomerenreinen Violaxanthinen und verwandten Verbindungen

von Murat Acemoglu, Peter Uebelhart, Max Rey und Conrad Hans Eugster*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(18. JV.88)

Syntheses of Enantiomerically Pure Violaxanthins and Related Compounds

The epoxides 16 and *ent*-16, prepared by *Sharpless-Katsuki* oxidation of 15 in excellent yield and very high enantiomeric purity, were used as synthons for the preparation of (+)-(S)-didehydrovomifoliol (45), (+)-(6S,7E,9E)-abscisic ester 46, (+)-(6S,7E,9Z)-abscisic ester 47, (-)-(3S,7E,9E)-xanthoxin (49), (-)-(3R,7E,9E)-xanthoxin (50), (3S,5R,6S,3'S,5'R,6'S, all-E)-violaxanthin (1) (3R,5R,6S,3'R,5'R,6'S, all-E)-violaxanthin (55) and their (9Z) (see 53, 57), (13Z) (see 54, 58), and (15Z) (see 60) isomers. The novel violadione (61) was prepared from 1 by oxidation with DMSO/Ac₂O. By base treatment, 61 was converted into violadienedione (62), a potential precursor of carotenoids with phenolic end groups.

1. Einleitung. – Zusammen mit Fucoxanthin, Lutein und Neoxanthin zählt Violaxanthin (1) zu den mengenmässig wichtigsten Carotinoiden, welche in Pflanzen gebildet werden. Es ist einerseits Partner im sog. Violaxanthin-Cyclus, einem lichtabhängigen

 O_2 -Transport in Pflanzen [1], in welchem es aus Antheraxanthin (2) durch Epoxydierung gebildet wird und über dieses Zwischenprodukt auch in Zeaxanthin (3) übergeht; s. *Schema 1.* Andererseits ist Violaxanthin Vorläufer von zahlreichen Carotinoiden, Apocarotinoiden und niedermolekularen Spaltstücken; s. *Schema 2* für einige der wichtigsten Transformationen der Violaxanthin-Endgruppe 4.

Violaxanthin ist erstmals von Kuhn und Winterstein aus gelben Blüten von Viola-tricolor-Kultivaren isoliert und charakterisiert worden [2]. Karrer und Jucker erkannten, dass ein Tetrahydrozeaxanthin-5,6:5',6'-diepoxid vorliegt [3]. Die in 1 angegebene absolute Konfiguration wurde von Bartlett et al. [4] per exclusionem aus der Nichtübereinstimmung der ORD-Kurven von partialsynthetischen Zeaxanthin-epoxiden mit derjenigen von 1 hergeleitet. Sie steht mit keinen experimentellen Fakten im Widerspruch, ist aber noch nie direkt bewiesen worden. Bis heute sind in der Natur noch nie epimere Violaxanthine aufgefunden worden. Violaxanthin kommt stets als Gemisch mit anderen Carotinoiden vor; in seltenen Fällen stellt es die Hauptkomponente dar [5]. Für die Zielsetzung dieser Arbeit ist wichtig festzuhalten, dass bis heute noch nie eine Synthese dieses wichtigen Carotinoids veröffentlicht worden ist; s. Kap.8. Da reines Violaxanthin in grösseren Mengen relativ schwer zugänglich ist, haben sich die bisherigen chemischen Untersuchungen vor allem auf Abbaureaktionen beschränkt; Transformationen im Sinn von Schema 2 sind erst wenige ausgeführt worden. Dies war mit ein Grund, weshalb wir

 Schema 2. Gesicherte und postulierte Umwandlungen der Violaxanthin-Endgruppe 4 in die Endgruppe von Mutatoxanthin (a), Heteroxanthin (b), Neoxanthin (c), Diatoxanthin (d), Capsanthin (e), Amarouciaxanthin (f), Renieratinol (g), Cucurbitaxanthin (h), Peridinin (i) und Fucoxanthin (k). S. [5–7].

eine ergiebige Synthese von 1 anstrebten. Für unsere Syntheseplanung war die Tatsache wichtig, dass Epoxydierungen an der 3-Hydroxy- β -Endgruppe stets zu einem Überwiegen der cis-Stereoisomeren geführt hat; s. $5 \rightarrow 6/7$, $8 \rightarrow 9/10$ und $11 \rightarrow 12/13$ in Schema 3. Besonders ungünstig sind die Ergebnisse auf der Carotinoid-Stufe, wie Resultate an Lutein [11], Antheraxanthin [12] und Zeaxanthin (s. Kap.8) zeigen. Wir haben deshalb einen andern Weg eingeschlagen und die Epoxid-Funktion als erstes Chiralitätszentrum und die OH-C(3)-Gruppe nachträglich eingeführt. Damit kam die enantioselektive Epoxydierung nach Sharpless et al. [13] als entscheidender Schritt an den Anfang der Synthese.

2. Synthese der diastereoisomeren (5R,6S)-3-Hydroxy-5,6-epoxy-ionyliden-alkohole **38 und 39** (Schema 4)¹). – Aus Isophoroncarbonsäure-ethylester (14) wurde nach einer verbesserten Vorschrift nach [14] der Dioxolanylalkohol 15 erhalten²). Anschliessend wurden nach dem katalytischen Verfahren von [13] bei -70° die enantiomeren Epoxide 16 und ent-16 in Ausbeuten von 93 bzw. 95% und ee-Reinheiten von 97,4 bzw. 94,8% hergestellt²). Hydrolyse der Acetale 17 und ent-17 ergab die sehr labilen Ketone 18 und ent-18, welche unter sauren und basischen Bedingungen rasch in die Enone 19 bzw. ent-19 übergingen. Diese unerwünschte Reaktion liess sich durch Acetal-hydrolyse mit Montmorillonit ('clay 10')³) und nachfolgender Reduktion mit (NaBH₄/Et₂O/MeOH/ 1,2-Dimethoxyethan (= Monoglym)) weitgehend vermeiden. Allerdings gelang uns trotz vieler Versuche nicht, eine diastereoselektive Reduktion zu erreichen: 20 und 21 entstanden nebeneinander im Verhältnis 1:0,7. Nach Schutz von OH-C(3) durch Veresterung mit Pivaloyl-chlorid (→22 bzw. 23) wurde die AcO-Gruppe verseift (→24 bzw. 25), der Alkohol mit DMSO/Oxalyl-chlorid [16] oxydiert und der Aldehyd 26 bzw. 27 mit einer Wittig-Reaktion zum geschützten Epoxyionon 28 bzw. 29 oder nach Wittig-Horner zum C_{15} -Ester 30 bzw. 32 verlängert. Dabei entstand stets auch das (9Z)-Isomere 31 bzw. 33, und zwar im Fall von reinem 26 zu ca. 40%, bei reinem 27 zu ca. 20%. Alle Isomeren wurden rein hergestellt und spektroskopisch charakterisiert; s. Exper. Teil. In allen Isomeren liess sich die Pivaloyl-Gruppe mit LiBr/NaBH₄/Diglyme leicht und selektiv abspalten. Auf diese Weise wurden die Hydroxyester 34-37 hergestellt. Diisobutylaluminiumhydrid (DIBAH)-Reduktion von 30 und 31 lieferte die Schlüsselverbindungen 38 und 39. Weil 38 sehr gut auch aus Gemischen kristallisierte, war es nicht notwendig, die relativ aufwendigen Trennungen der Stereoisomeren 20 und 21 durchzuführen: für prä-

¹) Die Carotinoid-Numerierung wird durchwegs verwendet; IUPAC-Namen der neuen Verbindungen, s. *Exper. Teil.*

²) Beschreibung unserer Versuche im kg-Maßstab, s. Exper. Teil.

³) Umkehr der Acetalisierungsmethode von [15].

parative Zwecke zogen wir deshalb das Stereoisomerengemisch bis zur Stufe 38/39 durch und liessen dann das reine 38 auskristallisieren. Dabei blieben auch die (9Z)-Isomeren in den Mutterlaugen.

Der wohl wichtigste Aspekt des hier beschriebenen Weges liegt in der strikten chemischen Korrelation von 16 mit 38: die $[\alpha]_D$ -Werte (CHCl₃) betragen in der (3.S)-Reihe für 16 +22,9, 17 -6,7, 18 nicht bestimmt, 20 -51,5, 22 -33, 24 -10,2, 26 -72,5, 28 -99,8, 30 -75,8 und 38 -81,3. Damit sind die in den Kap. 5-7 beschriebenen, optisch aktiven Folgeprodukte von 38 ebenfalls eindeutig mit 16 korreliert. Die absolute Konfiguration folgt einerseits auf der bekannten Enantioselektivität der Sharpless-Epoxydierung sowie andererseits aus den in Kap. 4 aufgeführten weiteren Argumenten.

3. Modifizierter Weg zur Synthese von 38 und 39 (Schema 5). – Folgendes Vorgehen erwies sich für präparative Ansätze als günstiger: das Epoxy-acetal 16 wurde mit DMSO/ Oxalyl-chlorid zum Aldehyd 40 oxydiert (85%) und dieser zum C_{13} -Acetal 41 oder dem C_{15} -Acetal 42/43 verlängert (75%). In letzterem Fall wurde ein bedeutend günstigeres

(E/Z)-Verhältnis von 7:1 erhalten als bei den Pivaloaten 30–33. Anschliessende Acetalspaltung in 42 mit Montmorillonit lieferte das labile Keton 44 (92%), dessen Reduktion mit DIBAH das (1,6:1)-Gemisch der C₁₅-Alkohole 38/39 ergab; Ausbeute 75%. Daraus liess sich reines 38 durch direkte Kristallisation gewinnen.

4. Konfiguration an C(3). – Es gelang uns nicht, genügend aussagekräftige spektroskopische Argumente zur Differenzierung von 20 und 21 aufzufinden, weil in diesen Diastereoisomeren der Ring enantiomere Halbsesselkonformationen mit jeweils äquatorialer OH-C(3) einnimmt. Zwar sind die Verschiebungsunterschiede von H-C(3) in den

$\Delta \varepsilon(330) + 0,2$ $\Delta \varepsilon(325) + 0,1^{a})$	$R = \beta \text{-OPiv} (28)$ $R = \alpha \text{-OPiv} (29)$	-99,8 -22,5	$\Delta \epsilon$ (234) -10,7 $\Delta \epsilon$ (234) -10,0
$\Delta \varepsilon(330) + 0.2$ $\Delta \varepsilon(325) + 0.1^{a})$	$R = \beta \text{-OPiv} (28)$ $R = \alpha \text{-OPiv} (29)$	-99,8 -22,5	$\Delta \varepsilon(234) - 10,7$ $\Delta \varepsilon(234) - 10,0$
$\Delta \varepsilon(325) + 0,1^{a})$	$\mathbf{R} = \alpha \operatorname{-OPiv} \left(29 \right)$	-22,5	<i>∆</i> ε(234) −10,0
	$\mathbf{R} = \boldsymbol{\beta} \text{-} \mathbf{OPiv} \ (30)$	-75,8	<i>Δ</i> ε(269) −4,4
	$\mathbf{R} = \alpha \operatorname{-OPiv} \left(32 \right)$	+1,0	<i>Δε</i> (268) −3,4
	$\mathbf{R} = \boldsymbol{\beta} \text{-OPiv} (31)$	-25,3	<i>∆</i> ε(272) +1,6
	$\mathbf{R} = \alpha \operatorname{-OPiv} \left(33 \right)$	+52,9	Δε(261) +2,9
		$R = \beta \text{-OPiv} (30)$ $R = \alpha \text{-OPiv} (32)$ $R = \beta \text{-OPiv} (31)$ $R = \alpha \text{-OPiv} (33)$	$R = \beta - OPiv (30) -75,8$ $R = \alpha - OPiv (32) +1,0$ $R = \beta - OPiv (31) -25,3$ $R = \alpha - OPiv (33) +52,9$

Tab. 1. $[\alpha]_D$ (CHCl₃)- und CD-Daten von Zwischenprodukten und Vergleich mit Literaturdaten

Isomeren deutlich, doch lässt sich daraus nur durch Zusatzannahmen auf die vorliegende Konfiguration schliessen. NOE-Bestimmungen zeigten bei beiden Isomeren praktisch gleiche Effekte. Aus dem Vergleich der $[\alpha]_D$ -Werte mit ähnlichen Verbindungen aus der Literatur (*Tab.1*) folgen die angegebenen Konfigurationen mit hoher Wahrscheinlichkeit. Die (3S)-konfigurierten Verbindungen weisen signifikant negativere Werte auf. Keine solchen Schlüsse liessen sich aus den CD-Daten gewinnen, da diese erwartungsgemäss vom Chiralitätszentrum an C(3) kaum beeinflusst werden (*Tab.1*).

5. Synthese von (+)-(S)-Didehydrovomifoliol (45), (+)-(6S,7E,9E)-Abszisinsäuremethylester (46) und (+)-(6S,7E,9Z)-Abszisinsäure-methylester (47; Schema 5). – Für die im Titel genannten Verbindungen existieren bereits eine grössere Zahl von Synthesen. Unser neuer Weg eröffnet einen besonders einfachen Zugang zu grösseren Mengen dieser Verbindungen. Dazu wurde 41, 42 oder 43 mit katalytischen Mengen von TsOH in Aceton bei RT. umgesetzt, wobei (+)-(S)-Didehydrovomifoliol (45), (+)-(6S,7E,9E)-Abszisinsäure-methylester (46) bzw. (+)-(6S,7E,9Z)-Abszisinsäure-methylester (47) in Ausbeuten von 95% entstanden (Daten mit Literaturvergleichen, s. Exper. Teil). Unser Weg stellt eine der kürzesten Varianten dar zur Synthese dieser enantiomerenreinen Verbindungen.

6. Synthesen von stereoisomeren Xanthoxinen und Violaxanthinen (Schema 6). – Mit der nun leichten Zugänglichkeit der enantiomeren Schlüsselverbindungen 38 und 39 war

der Weg offen für eine rationale Synthese der epimeren Violaxanthine und verwandter Verbindungen. Mit MnO₂ wurden die Aldehyde **49** (91%) und **50** (96%) erhalten. Sie sind Stereoisomere des Pflanzenwuchsstoffes Xanthoxin, welcher die (3S,7E,9Z)-Konfiguration hat [8] [17]. Der Vergleich der CD-Spektren von **49**, **50** und anderer C₁₅-Verbindungen, z. B. **30–37**, einerseits mit demjenigen von **46** zeigt den grossen Einfluss der Exciton-Kupplung zwischen Enon- und Dienon-Chromophor in letzterem; vgl. [18] [19].

Für die Synthese der Violaxanthine wählten wir zunächst den Aufbau mit dem C_{10} -Diphosphonium-Salz **51** nach [20]. Unter den üblichen Bedingungen (NaOMe/MeOH, -50° bis RT.) entstand kristallisiertes Violaxanthin nur in 38% Ausbeute. Zudem stellte es ein Gemisch der Stereoisomeren **1**, **53** und **54** im Verhältnis 1:0,2:0,3 dar. Sie wurden chromatographisch getrennt und charakterisiert (*Tab.2*).

Verbindung	Schmp.	UV/VIS (Et ₂ O/Isopentan/EtOH 5:5:2)			
1	198–199° ([24]: 189°; [26]: 200°)	265,5 (37500), 415,5 (102600), 437 (152500), 467 (150000)			
53	108° ([23] [25]: 112°)	266 (20 200), 410 (72 700), 432 (103 700), 461 (95 300)			
54	113–117° ([24] [27]: 108°)	267 (18 500), 314 (36 900), 327 (52 600), 408 (67 900), 431 (98 200), 460 (85 900)			
55	171–172°	266 (37 600), 414 (104 700), 438 (145 000), 467 (140 000)			
ent-55	173° [4]				
56	215–216°	267 (41900), 414,5 (104200), 438 (156000), 468 (152600)			
59	138–144°	267 (30 100), 323 (20 800), 400 (sh, 79 800), 418 (102 900), 444 (95 500)			
60	121–122,7° ([24]: 109°)	267 (18100), 313 (46000), 326 (66300), 390 (sh), 411 (66900),			
		434 (94600), 463 (82400)			
61	187–189°	265,5 (38600), 415,5 (98900), 437 (142500), 467 (135300)			
62	192–193°	264 (33 900), 415,5 (100 500), 438,5 (148 000), 468 (141 600)			

Tab. 2. Schmp. und UV/VIS-Daten von stereoisomeren Violaxanthinen

Mit demselben Verfahren wurden aus 50 die (3R,3'R)-Epimeren 55, 57 und 58 ebenfalls im Verhältnis 1:0,2:0,3 erhalten (Gesamtausbeute an kristallinem Material 30%; 55 wurde auch als Diacetat 56 charakterisiert). Wesentlich besser verliefen die Kondensationen mit dem C₁₀-Diphosphonat 52 [21]. Dabei wurde das ausgezeichnet kristallisierende 15,15'-Didehydroviolaxanthin (59), in einer Ausbeute von 80% erhalten. Katalytische Reduktion der Acetylen-Bindung mit *Lindlar*-Katalysator lieferte in praktisch quantitativer Ausbeute (15Z)-Violaxanthin (60). Bei seiner Isomerisation entstanden, besonders unter Lichtzutritt, leicht die (9Z)- und (13Z)-Isomeren in beträchtlicher Menge. Rein thermische Isomerisation gab 1 in 95% Ausbeute mit einem (*E/Z*)-Isomerenverhältnis von 4:1.

Stereoisomere Violaxanthine sind schon früh in Früchten und grünen Blättern festgestellt worden [22]. Ihre strukturelle Identifikation im Sinne von 53, 54 und 60 erfolgte später [23–25] [27]; 53 ist auch unter dem Namen Violeoxanthin bekannt geworden; vgl. [25]. Die vergleichende Charakterisierung der verschiedenen Violaxanthin-Isomeren ist in Tab. 2 dargestellt. Wie im Exper. Teil gezeigt wird, lässt sich 1 von 3,3'-Diepiviolaxanthin 55 chromatographisch nur mit Mühe trennen. Zudem sind ihre UV/VIS- und CD-Spektren nahezu identisch. Unterschiede zeigen sich vor allem in ihren NMR-Spektren (Fig.). Damit dürfte ein eventueller Nachweis von epimeren Violaxanthinen in der Natur möglich werden. Eine Epimerisation von 1 zu 55 fände wohl durch Dehydrierung und

Fig. $\Delta\delta(H)$ -Werte an der Endgruppe von (3S,3'S,all-E)- und (3R,3'R,all-E)-Violaxanthin (1 bzw. 55). ¹H-NMR (400 MHz, CDCl₃), $\Delta\delta = \delta(1) - \delta(55)$.

nachfolgende Reduktion der Carbonyl-Gruppen statt, wie dies im Fall von Lutein \rightleftharpoons 3', O-Didehydrolutein \rightleftharpoons 3'-Epilutein in Blüten von *Caltha palustris* und im Eigelb nachgewiesen worden ist [28–30]. Allerdings müsste dieser Mechanismus über das sehr labile Violadion (61; s. *Kap.* 7) führen, das sich sehr leicht in ein γ -Hydroxy-enon isomerisiert, eine Endgruppe (f in *Schema* 2), die ja in den Verbindungen 45–47 auftritt und die mit hoher Wahrscheinlichkeit aus Violaxanthin entstanden ist. Wenn aber Violadion (61) Zwischenprodukt einer solchen Umwandlung wäre, bestünde die Möglichkeit, dass es auch zu 3,3'-Diepiviolaxanthin 55 reduziert würde. Der Nachweis seiner Anwesenheit in Violaxanthin wäre, vor allem wenn es sich nur um geringe Bruchteile handelt, mit den bisherigen analytischen Methoden nicht möglich gewesen.

Violaxanthin ist zwar in Blüten, Früchten und in grünen Pflanzenteilen weitverbreitet, doch ist die Gewinnung in grösseren Mengen recht aufwendig. So hatten *Kuhn et al.* [2] zur Isolierung von 0,2–0,3 g Violaxanthin 8000 Blüten von rein gelben *Viola-tricolor*-Kultivaren eingesetzt, entsprechend 2,4 kg Frischgewicht und 0,4 kg Trockenmasse und einer Ausbeute von 0,05–0,07% (Isolierung ohne Chromatographie!). Diesbezüglich bedeutet unsere Synthese einen gewichtigen Fortschritt: ausgehend von 100 g Epoxid 16 lassen sich auf dem modifizierten Weg (*Kap. 3*) in 8 Stufen mindestens 20 g reines (3*S*,3'*S*, all-*E*)-Violaxanthin (1) herstellen, das sind 13% Ausbeute über alle Stufen. Unsere Synthese bestätigt nun auch die von *Weedon et al.* auf indirektem Weg hergeleitete absolute Konfiguration von 1 [4] auf unabhängige und direkte Weise. Es ist offenkundig, dass 16 (und *ent*-16) wertvolle Ausgangsstoffe für weitere Carotinoide mit Endgruppe 4 und davon abgeleiteten, modifizierten Endgruppen darstellen.

7. Synthese von Violadion (61) und Violadiendion (62; Schema 7). – In Kap.6 haben wir die Möglichkeit diskutiert, dass Violaxanthin 1 in der Natur durch Dehydrierung in das instabile 3,O:3',O-Tetradehydroviolaxanthin (61) übergehen könnte. Eine solche Verbindung ist unseres Wissens bis heute nicht bekannt geworden. Sie liess sich nun aus Violaxanthin durch eine modifizierte Swern-Oxydation [16] mit DMSO/Ac₂O [31] unter sehr milden Bedingungen in 60% Ausbeute herstellen. Die gut kristallisierte fuchsrote Verbindung 61 wird von uns 'Violadion' genannt.

Die UV/VIS-Spektren von 61 sind denen von 1 sehr ähnlich (*Tab.2*). Im IR zeigt die sehr starke Bande bei 1712 cm⁻¹ (CH₂Cl₂) die Anwesenheit von nichtkonjugierten Keto-Gruppen. Im ¹H-NMR-Spektrum fallen – strukturbeweisend! – die beiden unabhängigen *AB*-Systeme mit Kopplungskonstanten von 20 bzw. 15 Hz auf. Die *Cotton*-Effekte sind in den Hauptextrema kaum verschieden von denjenigen von 1 und 55.

Diese Daten zeigen, dass tatsächlich die Verbindung 61 vorliegt. Sie erwies sich als sehr empfindlich. Sowohl bei der DC auf Kieselgel als auch bei der HPLC auf *Spherisorb-CN* konnte sie nicht unverändert chromatographiert werden, es entstanden stets mehrere

Nebenprodukte in wechselnder Menge, unter denen neben (Z)-Isomeren stets auch das Eliminationsprodukt **62** enthalten war. Jeder Versuch, **61** aus der Natur zu isolieren, dürfte daher mit erheblichen Schwierigkeiten verbunden sein.

Behandelte man 61 in MeOH-Lösung mit wenig NaOMe, so liess sich in 85%Ausbeute das rote Isomerisierungsprodukt 62 fassen, das durch eine Eliminationsreaktion an C(4),C(5) entsteht. Wir nennen das gut kristallisierte Produkt 'Violadiendion'.

Die UV/VIS-Spektren von 62 (Tab. 2) zeigen den unveränderten Nonaen-Chromophor. Im IR absorbieren die nun konjugierten Carbonyl-Gruppen bei 1665 cm⁻¹ (CH₂Cl₂). Charakteristisch sind die Verschiebungen von CH₃(18,18') und H–C(4,4') nach tieferem Feld, sodass die angegebene Struktur gut belegt ist. Nicht überraschend ist die im Vergleich zu 1 und 55 sehr verschiedene *Cotton*-Kurve. Das Couplet im UV-Bereich entspricht dem von 45–47 und zeigt unseres Wissens zum erstenmal, dass Exciton-Aufspaltungen auch in der Carotin-Reihe vorkommen können. Bemerkenswert ist die ungewöhnlich hohe Elliptizität des Bandensystems im VIS schon bei RT.

Wir hatten keine Schwierigkeiten, Violadiendion (62) auf Kieselgel oder auf Umkehrplatten zu chromatographieren. Sofern 62 in der Natur auftritt, sollte seine Isolierung aufgrund unserer Daten unschwer zu realisieren sein.

8. Neuinterpretation der Versuche von Karrer und Jucker [3] (Schema 8). – Wie wir in der Einleitung bemerkt haben, nahmen Karrer und Jucker im Rahmen ihrer klassischen Epoxydierungsversuche an, aus Di-O-acetylzeaxanthin (3, R = Ac) auch natürliches Violaxanthin 1 erhalten zu haben. Dieses Resultat ist bereits durch die Versuche von [4] unwahrscheinlich geworden, wenn auch nicht ausgeschlossen werden durfte, dass mit den verwendeten Chromatographiermethoden kleine Mengen von Violaxanthin übersehen worden sind. Wir haben diese Versuche unter Überprüfung mittels neuerer HPLC-Methoden [32] bei leicht modifizierten Bedingungen wiederholt⁴). Durch Epoxydierung von 16 mg reinem Di-O-acetylzeaxanthin ([3]: 2 g) mit Peroxybenzoesäure ([3]: Monoperoxyphthalsäure) und üblicher Aufarbeitung durch Verseifung (in [3] nicht erwähnt) und Chromatographie an Kieselgel ([3]: ZnCO₃) wurden 4 Fraktionen erhalten. Fr. 1 und Fr. 4 enthielten keine Violaxanthine, Fr. 2 vorwiegend Antheraxanthin B (63; [12]) und 'Mesoviolaxanthin' (= semisynthetisches Violaxanthin B [4]; 64) und Fr. 3 vorwie-

⁴) Für die Ausführung dieser Versuche danken wir Frau Edith Märki-Fischer.

gend 'Epiviolaxanthin' (= semisynthetisches Violaxanthin A [4], 65). Die Ausbeuten betrugen 12,5% 63 ([3]: 2,0%), 0,6% 64, und 4,4% 65 ([3] für 'Violaxanthin' 1,7%). Weder fanden wir Antheraxanthin A (2) noch Violaxanthin 1. Daraus folgt, dass die Wahrscheinlichkeit, Violaxanthin 1 durch Persäure-Oxydation von Zeaxanthin zu erhalten, sehr gering ist und mit den bisher verwendeten Methoden noch nie erreicht worden ist. Somit stellt die in dieser Arbeit beschriebene Synthese von 1 die erste authentische Herstellung dieses wichtigen Carotinoids dar.

9. Bemerkungen. – Die in Kap. 2 beschriebenen Synthesen der enantiomeren Epoxide 16 und der diastereomeren C_{15} -Epoxyalkohole 38 und 39 eröffnen jetzt den Weg zur Herstellung einer Reihe von Carotinoiden mit der Violaxanthin-Endgruppe bzw. verschiedener davon abgeleiteter Verbindungen. Wir gedenken, in späteren Publikationen auf einige dieser Versuche zurückzukommen⁵). Da nur wenige der in Schema 2 postulierten Umwandlungen der Violaxanthin-Endgruppe bisher *in vitro* verwirklicht worden sind, müssen diese biologisch wichtigen Modifikationen an Violaxanthin selbst studiert werden. Unsere präparativ ergiebige Synthese bietet jetzt eine Grundlage für solche Untersuchungen.

Wir danken folgenden Personen und Institutionen für die Hilfe, die sie unserem Projekt angedeihen liessen: Frau E. Märki-Fischer für Hilfe bei HPLC-Trennungen und für die Nacharbeitung der Epoxydierungen an Zeaxanthin (Kap.8), Frl. Lilian Stäuble, Frl. Florence Schleppi und Hr. Beat Aeschlimann für experimentelle Beiträge, den analytischen Abteilungen unseres Institutes für Analysen und Spektren und dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung.

940

⁵) Die wesentlichen Ergebnisse dieser Arbeit wurden von *M.A.* am 28.7.87 im Rahmen des 8. internationalen Symposiums über Carotinoide in Boston, Mass., vorgetragen.

Experimenteller Teil

1. Allgemeines. S. [32]. GC: t_R in min. SC = Säulenchromatographie. Die Zuordnungen von mit * bezeichneten NMR-Signalen sind vertauschbar.

2. 2,6,6-Trimethyl-4-oxo-2-cyclohexencarbonsäure-ethylester (14) im kg-Maßstab (vgl. [14]). Im 50-1-Reaktor (Büchi CR-50) wurden 3,926 kg (40 mol) Mesityl-oxid (= 4-Methyl-3-penten-2-on; Fluka, pract.; redest.), 5,206 kg (40 mol) Acetessigsäure-ethylester (Fluka, purum), 4,5 l Heptan (redest.) und 5,5 l Benzol vorgelegt. Nach Spülen der Apparatur mit N2 wurden unter schwachem N2-Strom und gutem Rühren bei 10° Aussentemp. 800 g (5,87 mol) H₂O-freies ZnCl₂ (Fluka, purum) portionsweise innerhalb von 20-30 min zugegeben. Darauf wurde unter Rückfluss gekocht (Aussentemp. 110°, Innentemp. 94°) und das abgeschiedene H₂O laufend entfernt. Gleichzeitig wurde der Reaktionsverlauf im GC verfolgt. Obschon die H2O-Abscheidung bereits nach 3 Tagen beendet war, wurde aufgrund der GC-Analyse insgesamt 211 h unter Rückfluss gekocht. Nach Abkühlen wurde mit 10 1 H₂O, 5 1 H₂O, 5 1 5% NaHCO₃-Lsg. und 5 1 H₂O gewaschen, die org. Phase getrocknet (1,5 kg Na₂SO₄) und darauf via GAF-Filter (5 µ) in den 20-l-Rotationsverdampfer eingesogen und im Partialvakuum eingedampft. Der ölige, gelbliche Rückstand (6,09 kg), laut GC ein Gemisch von Mesityl-oxid/Acetessigester/Isophoron/ 4,6,6-Trimethyl-2-oxo-3-cyclohexencarbonsäure-ethylester/unbekanntes Nebenprodukt/14 im Verhältnis 7:10:21:4:4:54, enthielt 14 nach GC zu 51% (3,13 kg, 37% Ausbeute). Destillation im Dünnfilmverdampfer ergab 1,53 kg Fr. 1, Sdp. 75–110°/25 Torr (mit 5% 14), 0,676 kg Fr. 2, Sdp. 67–75°/0,03 Torr (mit 15% 14), 0,244 kg Fr.3, Sdp. 75-80°/0.03 Torr (mit 30% 14) und 3,10 kg Fr.4, Sdp. 85-115° (14 mit 4% Isophoron). Redestillation von Fr. 4 durch Vigreux-Kolonne lieferte 2,89 kg 14, Reinheit 88-89%. Redestillation von Fr. 2 und 3 ergab noch 150 g 14, Reinheit 88-89%. Gesamtausbeute an 14: 3,04 kg (36%) schwach gelbes Öl.

3. 4,4-(Ethylendioxy)-2,6,6-trimethyl-1-cyclohexen-1-methanol (15; vgl. [14]). In einem 50-l-Ausrührgefäss wurden unter N₂ zu einem gerührten Gemisch von 3,04 kg (14,45 mol) 14 (88–89% rein), 6 l Ethan-1,2-diol (*Fluka*, *puriss.*), 6,7 l CH(OEt)₃ (*Fluka*, *purum*) und 6,5 ml konz. H₂SO₄-Lsg. gegeben. Die Lsg. wurde unter Abkühlung bei 12° 40 min gerührt (Blaufärbung) und hierauf unter Lichtausschluss 20 h stehen gelassen. Nach Zugabe von 20 l Hexan wurde mit je 5 l ges. wässr. NaHCO₃-Lsg. und mit je 5 l H₂O je 2mal ausgewaschen und die vereinigte Wasch-Lsg. mit 6 l Hexan zurückgewaschen. Nach Trocknen (MgSO₄), Filtration durch *GAF*-Filter (5 μ) und Eindampfen blieben 3,66 kg Öl, bestehend aus Acetal I/Acetal II/14/andere Verbindungen im Verhältnis 61:28:2:9 (vgl. auch *Tab.3*, *Fussnote a*).

4,4-(*Ethylendioxy*)-2,6,6-trimethyl-1-cyclohexen-1-carbonsäure-ethylester (I): Farbloses Öl, t_R (170°) 6,21. IR (Film): 2960m (br.), 2930m (br.), 2880m (sh), 1720s, 1665w, 1468w, 1450w, 1420w, 1375m, 1347w, 1324w, 1300w, 1260m, 1235w, 1210m, 1145w, 1097s, 1063w, 1040m, 1020w, 980w, 950w, 907w, 865w, 846w, 800w, 757w, 725w. ¹H-NMR (80 MHz, CDCl₃): 1,19 (s, 2 CH₃-C(1)); 1,31 (t, J = 7, CH₃CH₂O); 1,69 (s, CH₂(2), CH₃-C(5)); 2,29 (s, CH₂C(4)); 3,94 (s, OCH₂CH₂O); 4,23 (q, J = 7, CH₃CH₂O). ¹³C-NMR (50 MHz, CDCl₃): 14,28 (CH₃CH₂O); 21,00 (CH₃-C(5)); 28,84 (2 CH₃-C(1)); 35,90 (C(1)); 41,39 (C(2)); 45,13 (C(4)); 60,16 (CH₃CH₂O); 64,04 (OCH₂CH₂O); 107,45 (C(3)); 130,36 (C(5)); 134,50 (C(6)); 170,20 (C(7)). MS: 254 (40, M^+), 239 (11), 211 (29), 209 (31), 126 (46), 123 (26), 87 (100), 43 (56), 40 (78).

4,4- (Ethylendioxy)-2,6,6-trimethyl-2-cyclohexen-1-carbonsäure-ethylester (II): Farbloses Öl, $t_{\rm R}$ (170°) 5,58. IR (Film): 2965*m*, 2940*m*, 2910*m*, 2878*m*, 1731*s*, 1674*m*, 1636*w*, 1470*w*, 1445*w*, 1390*w*, 1380*w*, 1370*m*, 1325*w*, 1302*w*, 1262*w*, 1238*w*, 1150*m*, 1095*s*, 1045*m*, 1030*m*, 990*w*, 955*m*, 905*w* (br.), 852*w*, 800*w*, 737*w*. ¹H-NMR (80 MHz, CDCl₃): 1,00, 1,08 (2*s*, 2 CH₃-C(1)); 1,26 (*t*, *J* = 7, CH₃CH₂O); 1,55, 2,20 (*AB*, J_{AB} = 14, CH₂(2)); 1,71 (*m*, $w_{\gamma_{L}}$ = 5, CH₃-C(5)); 2,68 (*s*, H-C(6)); 3,94 (*m*, OCH₂CH₂O); 4,15 (*q*, *J* = 7, CH₃CH₂O); 5,50 (*m*, $w_{\gamma_{L}}$ = 7, H-C(4)). ¹³C-NMR (50 MHz, CDCl₃): 14,23 (CH₃CH₂O); 22,47 (CH₃-C(5)); 27,40, 28,66 (2 CH₃-C(1)); 33,64 (C(1)); 42,60 (C(2)); 57,39 (C(6)); 60,42 (CH₃CH₂O); 63,92, 64,37 (OCH₂CH₂O); 105,68 (C(3)); 124,01 (C(4)); 135,49 (C(5)); 171 (C(7)). MS: 254 (4, *M*⁺), 239 (4), 198 (40), 181 (16), 137 (17), 126 (100), 98 (14), 73 (14), 41 (21), 40 (46).

HELVETICA CHIMICA ACTA -- Vol. 71 (1988)

Das Gemisch I/II/14/andere Verbindungen wurde im 50-l-Ausrührgefäss in 14,5 l Et₂O gelöst und unter Rühren mit 104 ml H₂O versetzt. Nach 5 min wurden 100 g TsOH \cdot H₂O in Portionen innert 30 s zugegeben. Die sofort dunkel werdende Lsg. wurde 5 min bei RT. gerührt und darauf mit 5 l ges. wässr. NaHCO₃-Lsg. neutralisiert. Nach 10 min Rühren wurden 6 l Hexan und 3 l Toluol zugegeben, es wurde kurz gerührt und die wässr. Phase abgelassen. Nach Waschen mit je 4 l H₂O, Trocknen und Eindampfen wurden 3,32 kg Öl erhalten, das nach GC 60% I und 29% 14 neben 11% Verunreinigungen enthielt. Destillative Trennung an einer *Fischer*-Spaltrohrkolonne (Bad 158°/0,05 Torr, Sumpf 146°, Rücklauf 20%, Abnahme 80%, Teilung 5:20, Sdp. 105°) lieferte 1,30 kg Destillat mit 66% 14, 24% I und 10% anderen Stoffen. Dieses Destillat wurde erneut mit 2,8 l CH(OEt)₃, 2,5 l Ethan-1,2-diol und 2,7 ml H₂SO₄ in 1,48 kg rohes I/II übergeführt. Nach erneuter Partialhydrolyse mit TsOH H₂O wurden 1,39 kg Gemisch gewonnen, das wiederum an der Spaltrohrkolonne von den leichterflüchtigen Anteilen (14, I, andere Stoffe) befreit wurde. Die verbleibenden vereinigten Rückstände wurde an einem Dünnfilmverdampfer destilliert, Sdp. 115°/0,05 Torr, Bad 128°. Gesamtausbeute an gereinigtem I, 2,18 kg (59%); Zusammensetzung: 91% I, 1% II, 3% 14 und 4% unbekannte Verbindungen (vgl. auch *Tab. 3, Fussnote b*).

Reaktions- zeit [min]	14 (t _R 3,39)		II (t _R 5,58)		$I(t_{R} 6,22)$	
	Bildung ^a) [%]	Hydrolyse ^b) [%]	Bildung ^a) [%]	Hydrolyse ^b) [%]	Bildung ^a) [%]	Hydrolyse ^b) [%]
0		2,0		31,2		66,8
1		29,5		0,4		70,0
2	92	29,2	8	0,2	< 0,5	70,6
3		30,7		0,2		69,1
5		31,0		0,2		68,7
9		32,3		< 0,1		67,7
15		33,0		< 0,1		67,0
30	28		65		7	
90	4		76		20	
180	< 1		61		39	
300	2		44		54	
480	3		34		63	
1440	< 1		33		67	

Tab. 3. GC der Bildung und Hydrolyse von I und II aus 14

^a) Bildung: Ansatz von 2,25 g (10 mmol) 14, 5,00 ml CH(OEt)₃, 4,50 ml Ethan-1,2-diol und 5 μ l H₂SO₄ wie Hauptansatz.

^b) Hydrolyse: Ansatz von 2,54 g (10 mmol) Gemisch II/I, 10 ml Et₂O, 72 μ l H₂O und 70 mg TsOH \cdot H₂O, RT.

Zu einer Suspension von 200 g (5,26 mol) LiAlH₄ in 7,5 l t-BuOMe (Fluka puriss.; über NaPb-Amalgam aufbewahrt) in einem 50-1-Reaktor wurde innert 60 min eine Lsg. von 2,00 kg (7,86 mol) I in 3,51 t-BuOMe unter Rühren getropft. Dabei wurde die Manteltemp. auf die Innentemp. nachgestellt, wenn sie durch die leicht exotherme Reaktion um 3° über diese angestiegen war. Nach beendeter Zugabe wurde das Gemisch 30 min bei 55° Innentemp. (Mantel 61°) gehalten (GC: noch 12% I), dann mit weiteren 50 g LiAlH₄ versetzt und noch 2 h bei 55° gehalten (GC < 0.5% I). Nach Kühlen auf 25° Innentemp. wurde 1 l AcOEt/t-BuOMe 1:1 zulaufen gelassen. Nach Kühlen auf 15° (innen) wurden bei starkem Rühren 3,5 1 Hexan und dann innert 5 min 600 ml H₂O zugegeben. Nach 60 min Rühren wurde abgenutscht, der Rückstand durch Aufschlämmen in 10 I Toluol und erneutes Abnutschen extrahiert und die org. Phase eingedampft. Der Rückstand (1,67 kg) wurde dann im Dünnfilmverdampfer bei 122-124°/0,05 Torr, Bad 134-139°, destilliert: 1,598 kg viskoses, schwach gelbes Öl, Reinheit nach GC 85%. Erneute Destillation in der grossen Spaltrohrkolonne bei 0,05 Torr, Bad 160° (Sumpf 145°), gab die folgenden Fraktionen: Sdp. 50-91°, 30 g (50% Rücklauf, Teilung 10:10), nach GC Gemisch verschiedener Substanzen, verworfen; Sdp. 92-95°, 94 g (67% Rücklauf, Teilung 10:20), nach GC zu 85% aus (1:3)-Gemisch der Diastereoisomeren III; Sdp. 96-110°, 43 g (67% Rücklauf, Teilung 10:20), nach GC Gemisch 15/III 52:43; Sdp. 111-113°, 1,31 kg (20% Rücklauf, Teilung 20:5), nach GC 96-97% 15, farbloses, viskoses Öl; Sdp. 114-119°, 17 g (33% Rücklauf, Teilung 20:10), nach GC 68% 15; Blasenrückstand 95 g, nach GC noch 4% 15 enthaltend, verworfen. Aus 675 ml Et₂O und 4000 ml Hexan wurden 1,31 kg Produktfraktion bei -20° kristallisiert. Nach 21/2 Tagen wurde im Kühlraum (4°) abgenutscht, mit kaltem Hexan der Nutscheninhalt

gewaschen und dann bei 12 Torr getrocknet: 1,05 kg farblose Kristalle, Schmp. 20–21°, GC-Reinheit > 99%. Mutterlaugen (256 g), Zwischenfraktion (43 g) und Nachlauf (17 g) wurden zusammengenommen und erneut an der Spaltrohrkolonne fraktioniert. Aus der Produktfraktion (162 g; GC *ca.* 85% **15**) wurden durch 2fache Kristallisation aus $Et_2O/Hexan$ bei -20° wie oben 95 g **15** gewonnen (Reinheit 95%). Ausbeute total 1,145 kg (75% bzgl. 100% 6). Die Kristalle verflüssigten sich wieder bei RT.

Daten von **15**: t_{R} (170°) 4,038. IR (CHCl₃): 3618*m*, 3030*w*, 3010*s*, 2960*s*, 2940 (sh), 2920*s*, 2890*s*, 1660*w*, 1494*w*, 1468*w*, 1450*w*, 1420*w*, 1394*w*, 1382*m*, 1370*m*, 1349*w*, 1326*w*, 1257*w*, 1235*m*, 1170*w*, 1140*m*, 1090*s*, 1046*w*, 1038*w*, 1020*m*, 986 (sh), 971*s*, 950*m*, 888*w*, 715*w*, 664*w*. ¹H-NMR (80 MHz, CDCl₃): 1,14 (*s*, 2 CH₃–C(1)); 1,68 (*s*, CH₂C(2)); 1,79 (*s*, CH₃–C(5)); 2,28 (*s*, CH₂C(4)); 3,94 (*s*, OCH₂CH₂O); 4,17 (*s*, CH₂C(7)). ¹³C-NMR (20 MHz, CDCl₃): 19,27 (CH₃–C(5)); 28,59 (2 CH₃–C(1)); 36,63 (C(1)); 42,20 (C(2)); 45,23 (C(4)); 57,81 (C(7)); 63,67 (OCH₂CH₂O); 107,53 (C(7)); 129,72 (C(5)); 136,59 (C(6)). MS: 212 (4, *M*⁺), 194 (6), 179 (11), 150 (9), 135 (10), 107 (21), 93 (21), 91 (14), 87 (61), 86 (100).

4. (-)-(1S,2S)-1,2-Epoxy-4,4-(ethylendioxy)-2,6,6-trimethylcyclohexan-1-methanol (ent-16). Unter N₂ wurden im 12-1-Reaktor 80 g frisch aktiviertes 4-Å-Molekularsieb (gepulvert) mit 2,8 l CH₂Cl₂ (destilliert und über 3-Å-Molekularsieb getrocknet) versetzt und mit MeOH/fl. N2 auf -19° Innentemp. (Bad -33°) gekühlt. Bei dieser Temp. wurden der Reihe nach 109 g (0,53 mol) (+)-Weinsäure-diethylester, 107 g (0,38 mol) Ti(i-PrO)₄ (dest.) und 1,371 ca. 3M t-BuOOH in Isooctan (ca. 4,1 mol), vorgekühlt auf 4°, unter Rühren zugegeben. Das Gemisch hielt man nach beendeter Zugabe noch 15 min bei -10 bis -15° Innentemp. Danach wurde auf -50° gekühlt (Bad -70°) und eine Lsg. von 400 g (1,88 mol) 15 (krist.; nach GC ca. 99%) in 400 ml CH₂Cl₂ unter gutem Rühren und innerhalb von 30 min über die kalte Gefässinnenwand zulaufen gelassen. Nach beendeter Zugabe wurde das Gemisch unter Rühren zuerst 30 min bei -47° (Innentemp.) gehalten, innerhalb von 75 min auf -35° und dann während 60 min auf -7° aufgewärmt. Ohne weitere Kühlung wurden darauf 2 1 H₂O zugegeben; nach 30 min Rühren betrug die Innentemp. +12°. Jetzt wurden 300 ml 30% NaOH-Lsg., die mit NaCl gesättigt war, zugefügt und 20-30 min gerührt und gleichzeitig auf 20° erwärmt. Die untere CH2Cl2-Schicht wurde abgetrennt und die H₂O-Phase mit 2 | CH₂Cl₂ gerührt und zur Trennung der Phasen durch Celite filtriert. Die H₂O-Phase wurde erneut mit 2 l CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Extrakte trocknete man (MgSO₄) und dampfte sie bei 10-20° (Bad 30°) ein. Unreagiertes t-BuOOH wurde aus diesem Rückstand ohne Erwärmung im Rotationsverdampfer bei 0,05 Torr in eine mit fl. N2 gekühlte Vorlage überdestilliert, das noch kalte Kondensat mit dem zweifachen Volumen an CH₂Cl₂ verdünnt und das Hydroperoxid durch Zugabe von P(OEt)₃ unter guter Kühlung (!) reduziert. Das im Destillationskolben verbleibende ölige Epoxid wurde im Rotationsverdampfer destilliert: 1. Fr., 13,1 g, Sdp. 40-60°/0,07 Torr, Bad 113°, enthielt nach GC 4% ent-16; 2. Fr., 11,2 g, Sdp. 60-90°/0,03 Torr, Bad 130-135°, enthielt nach GC 40 % ent-16; 3. Fr., 410,6 g, Sdp. 120°/0,005 Torr, Bad 132°, enthielt nach GC 98 % ent-16, farbloses Öl; Ausbeute 95%, $[\alpha]_D^{20} = -21.9$ (c = 0.85, CHCl₃), ee 94.8% (s. Exper. 6).

5. (+)-(1 R, 2 R)-1,2-Epoxy-4,4-(ethylendioxy)-2,6,6-trimethylcyclohexan-1-methanol (16). In einem leicht modifizierten Verfahren wurden umgesetzt: 140 g 4-Å-Molekularsieb, 4,8 l CH₂Cl₂, 191 g (0,93 mol) (-)-Wein-säure-diethylester und 187 g (0,66 mol) Ti(i-PrO)₄ unter Zugabe von 2,05 l *ca*. 3m *t*-BuOOH-Lsg. in Isooctan bei -20° . Bei -60° (Innentemp.) wurden 700 g (3,30 mol) 15 (GC 99%) in 700 ml CH₂Cl₂ innert 65 min zulaufen gelassen (-47°); erneute Kühlung auf -67° und Rühren über Nacht (Anstieg auf -39°). Nach identischer Aufarbeitung und Destillation wurden 702 g (93%) 16 erhalten. $[a]_{20}^{20} = +22,9 (c = 0,8, CHCl_3), ee 97,4\%$ (s. *Exper. 6*). IR (Film): 3470s (br.), 2960s, 2924s, 2884s, 1750w, 1470w, 1450w, 1408w, 1370w, 1348w, 1320w, 1303w, 1272w, 1212m, 1135m, 1090s, 1065m, 1040s, 1020s, 985m, 950m, 920w, 882w, 860w, 800w, 750w, 730w, 670w. ¹H-NMR (CDCl₃, 400 MHz)⁶): 1,083, 1,158, 1,402 (3s, 3 CH₃); *ca*. 1,313 (*dd*, ²*J* = 13,8, ⁴*J* = 2,2, H_{eq}-C(2)); *ca*. 1,624 (*d*, ²*J* = 13,8, H_{ax}-C(2)); 1,997 (*dd*, ²*J* = 15,6 H*J* = 2,2, H_{eq}-C(4)); 2,247 (*d*, ²*J* = 15,6, H_{ax}-C(4)); 3,67–3,95 (*m*, CH₂C(7), OCH₂CH₂O). ¹³C-NMR (CDCl₃, 50 (*t*, C(7)); 63,6 (*t*, C(1')); 64,0 (*s*, C(5)); 64,1 (*t*, C(2')); 68,5 (*s*, C(6)); 106,7 (s. (C3)). CI-MS: 229 (74, *M*⁺⁺ 1), 211 (29, *M*⁺⁺ - H₂O), 201 (6), 197 (15), 181 (11), 167 (30), 142 (34), 129 (77), 87 (100).

6. Enantiomerenreinheit von 16 und ent-16. Die beiden Enantiomeren zeigten in Anwesenheit von $Eu(dcm)_3$ signifikante und unterschiedliche Verschiebungen von $CH_2(4)$, die zur Bestimmung der Enantiomerenreinheit ausgenutzt wurden, unter variierten Substanz/Eu(dcm)₃-Verhältnissen war bei 16 und *ent*-16 kein Enantiomer zu erkennen.

⁶) Diese und spätere ¹H-NMR-Analysen an 5,6-Epoxiden gehen von der Annahme aus, dass die Signale von $CH_2(2)$ bei höherem Feld liegen als diejenigen von $CH_2(4)$.

Durch Veresterung mit (-)-(S)-2-Methyl-2-phenyl-2-(trifluoromethyl)acetyl-chlorid (MPTA-Cl) in Pyridin nach [33] wurden die diastereoisomeren MPTA-Ester von 16 und *ent*-16 hergestellt und im GC an einer mit Polyglycol belegten 25 × 0,23 mm-*WCOT*-Säule (*CPWax57CB*, *Chrompack*) untersucht: *ent*-16: Pikverhältnis 2,6:97,4, %ee 94,8, $[\alpha]_D^{20} = -21,9$, opt. Reinheit 94,8%; 16: Pikverhältnis 98,7:1,3, %ee 97,4, $[\alpha]_D^{20} = +22,5$, opt. Reinheit 97,4%; 16/*ent*-16 71:29: Pikverhältnis 71,1:28,9, %ee 42,2, $[\alpha]_D^{20} = +9,9$, opt. Reinheit 42,9% (Durchschnittswerte aus mehreren Bestimmungen).

7. (1 R, 2 R)-Essigsäure-[1,2-epoxy-4,4-(ethylendioxy)-2,6,6-trimethylcyclohexan-1-methyl]ester (17). Die Lsg. von 24,2 g 16 in 150 ml trockenem Pyridin wurde bei 0° mit 50 ml Ac₂O versetzt. Das Gemisch wurde 4 h bei 0° gerührt, dann auf Eiswasser gegossen und mit Et₂O extrahiert. Die Et₂O-Phase wurde 1mal mit H₂O, dann 3mal mit ges. CuSO₄-Lsg., 1mal mit ges. NaHCO₃-Lsg. und zuletzt mit ges. NaCl-Lsg. gewaschen, getrocknet (Na₂SO₄) und eingedampft: 26 g (91%) 17, $t_{\rm R}$ (170°) 7,97. $[\alpha]_D^{20} = -6,7$ ($c = 3,39 \cdot 10^{-2}$ m CHCl₃). IR (CHCl₃): 3005*m*, 2963*s*, 2930*m*, 2882*m*, 1740*s*, 1485*w*, 1466*w*, 1450*w*, 1383*m*, 1370*s*, 1348*w*, 1320*w*, 1250*s*, 1180*w*, 1143*m*, 1100*m*, 1090*s*, 1065*m*, 1040*s*, 1020*m*, 985*m*, 950*m*, 895*w*, 875*w*, 715*w*, 665*w*. ¹H-NMR (CDCl₃, 80 MHz): 1,18, 1,09, 1,37 (3*s*, 3 CH₃); 2,06 (*s*, Ac; 1,0–2,5 (*m*, CH₂C(2), CH₂C(4)); 3,5–4,0 (*m*, OCH₂CH₂O); 4,02, 4,50 (2*d*, ²*J* je 12,3, CH₂C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 20,83, 21,53, 24,92 (3*q*, 3 CH₃); 26,80 (*q*, CH₃-C(1)); 34,67 (*s*, C(1)); 41,53 (*t*, C(4) = *); 42,76 (*t*, C(2)*); 63,26 (*s*, C(5)); 63,63 (*t*, OCH₂CH₂O); 63,67 (*t*, OCH₂CH₂O); 64,04 (*t*, CH₂C(7)); 66,15 (*s*, C(6)); 106,70 (*s*, C(3)); 170,36 (*s*, C=O). CI-MS: 271 (100, *M*⁺ + 1), 253 (9, *M*⁺ + 1 - H₂O), 211 (35), 167 (23), 129 (30), 87 (67).

8. (1 R, 2 R)-*Essigsäure*-(1,2-epoxy-2,6,6-trimethyl-4-oxocyclohexan-1-methyl)ester(**18**). In einem typischen Experiment wurden 6,2 g (22,9 mol) **17** in 200 ml Toluol unter Rühren mit 30 g MgSO₄ sowie 3 ml H₂O versetzt. Das Gemisch wurde kurz geschüttelt. Danach wurde auf einmal und möglichst rasch mit 45 g Montmorillonit ('clay 10') versetzt, der Kolben verschlossen und 2–3 min stark geschüttelt. Dann wurde mit 200 ml AcOEt verdünnt, nochmals kurz geschüttelt, mit *Celite* vermischt und über eine *Celite*-Schicht abgenutscht. Eindampfen und Trocknen i. HV. lieferten 5,02 g Produkt, laut GC *ca.* 90% **18**, $t_{\rm R}$ (170°) 4,02, und *ca.* 5% **19**, $t_{\rm R}$ (170°) 5,75. Effektive Ausbeute an **18**: 4,52 g (87%). Bei längerer Reaktionszeit kann **18** vollständig in 19 übergeführt werden. Wegen der hohen Säure- und Basenempfindlichkeit von **18** wurde auf eine Reinigung verzichtet. IR (Film): 2965*m*, 2938*m*, 2880*w*, 1745*s*, 1720*s*, 1470*w*, 1382*m*, 1370*m*, 1330*w*, 1290*w*, 1235*s*, 1110*w*, 1085*w*, 1040*s*, 982*w*, 953*w*, 912*w*, 822*w*, 730*w*. ¹H-NMR (CDCl₃, 200 MHz): 1,06, 1,17, 1,41 (3*s*, 3 CH₃); *ca.* 1,90, *ca.* 2,55 (*AB*, $J_{AB} = 15$, CH₂C(2)); 2,07 (*s*, Ac); *ca.* 2,58 (*ca.* 2,80 (*AB*, $J_{AB} = 20$, CH₂C(4)); *ca.* 4,16 (*d*, ²*J* = 12,5, H–C(7)); *ca.* 4,57 (*d*, ²*J* = 12,5, (H–C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 19,89 (*q*, CH₃–C(5)); 20,74 (*q*, CH₃-C(1)); *cb.*88 (*s*, C(6)); 170,14 (*s*, CH₃-C(1)); 35,81 (*s*, C(1)); 43,86 (*t*, C(4)*); 51,48 (*t*, C(2)*); 61,70 (*s*, C(5)); 62,19 (*t*, C(7)); 65,88 (*s*, C(6)); 170,14 (*s*, CH₃-C(1)); 20,78 (*s*, C(3)). CI-MS: 227 (100, $M^{++} + 1$), 211 (15), 209 (11), 167 (12), 149 (9), 109 (4).

9. (S)-Essigsäure-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-methyl)ester (19). Bei längerer Reaktionszeit im Exper. 8 wurde 18 vollständig in 19 übergeführt. Farblose Kristalle aus Et₂O/Hexan. Schmp. 116,5–117,5°. [α]₁₀^D = +44,3 (c = 2,68·10⁻² M, CHCl₃). UV (CH₃CN): 233 (10600). CD (CH₃CN, c = 1,385·10⁻⁴ M): 272 (0), 239 (-7,4), 226 (0), 210 (+13,1), 190 (0). IR (KBr): 3410s, 2990w, 2965w, 2880w, 1744s, 1645s, 1617w, 1446w, 1424w, 1390m, 1380m, 1335m, 1310w, 1287w, 1258s, 1240s, 1172w, 1133m, 1085w, 1052m, 1040m, 985m, 963w, 916m, 890w, 872w, 840w, 825w, 740w, 660w, 625w. ¹H-NMR (CDCl₃, 80 MHz): 1,08 (s, CH₃–C(1)); 1,13 (s, CH₃–C(1)); 2,03 (d, d \approx 1,5, CH₃–C(5)); 2,07 (s, Ac); ca. 2,31, ca. 2,54 (AB, J_{AB} = 18, 2 H, CH₂C(2)); 4,15 (d, 2J = 12, H–C(7)); 4,43 (d, 2J = 12, H–C(7)); 5,92 (m, H–C(4)). ¹³C-NMR (CDCl₃, 20 MHz): 19,8 (q, CH₃–C(5)); 20,6 (q, CH₃CO); 23,6 (q, CH₃–C(1)); 23,9 (q, CH₃–C(1)); 40,3 (s, C(1)); 49,5 (t, C(2)); 66,6 (t, C(7)); 76,5 (s, C(6)); 127,6 (d, C(4)); 162,7 (s, C(5)); 170,6 (s, CH₃-C(); 197,4 (s, C(3)). MS: 170 (2), 166 (25), 153 (50), 139 (28), 128 (31), 110 (38), 107 (20), 82 (13), 68 (9), 55 (7). Anal. ber. für C₁₂H₁₈O₄ (226,28): C 63,70, H 8,02; gef.: C 63,78, H 7,98.

10. (1R, 2R, 4S)- und (1R, 2R, 4R)-Essigsäure-(1, 2-epoxy-4-hydroxy-2,6,6-trimethylcyclohexan-1-methyl)ester (20 bzw. 21). Eine Lsg. von 5,02 g 18, enthaltend 10% 19, in 120 ml abs. Et₂O/MeOH/Diglyme 1:1:2 wurde bei 0° mit 900 mg NaBH₄ versetzt. Dann wurde das Kühlbad entfernt und 15 min bei RT. gerührt. Danach wurde in Et₂O aufgenommen, mit ges. NaCl-Lsg. ausgewaschen, getrocknet (Na₂SO₄) und eingedampft: 4,2 g (80% bzgl. 17; 81% bzgl. Reduktion von 18) Rohprodukt, welches laut GC 36% 21, t_R (170°) 4,55, und 52% 20, t_R (170°) 4,67 enthielt. Die Trennung erfolgte durch SC an Kieselgel (*Merck, KG60;* 230–400 mesh) mit Hexan/Et₂O 1:1 + 0,5% MeOH (20 wurde zuerst eluiert).

Daten von **20**: Farblose Flüssigkeit $[\alpha]_{20}^{20} = -51,5$ ($c = 4,22 \cdot 10^{-2}$ M, CHCl₃). IR (Film): 3430*s*, 2970*s*, 2930*s*, 2880*m*, 1744*s*, 1468*m*, 1384*s*, 1370*s*, 1244*s*, 1190*w*, 1150*m*, 1115*w*, 1085*m*, 1040*s*, 995*w*, 980*w*, 940*w*, 915*m*, 895*m*, 860*w*, 815*w*, 735*s*, 687*w*, 630*w*. ¹H-NMR (CDCl₃, 400 MHz): 1,097, 1,137, 1,382 (3*s*, 3 CH₃); 1,225 (*dd*,

 ${}^{2}J \approx {}^{3}J \approx 12, H_{ax}-C(2)); 1,541 (ddd, {}^{2}J \approx 12, {}^{3}J \approx 3, {}^{4}J = 2,1, H_{eq}-C(2)); 1,638 (dd, {}^{2}J = 14, {}^{3}J = 9,4, H_{ax}-C(4)); 2,085 (s, Ac); 2,348 (ddd, {}^{2}J = 14, {}^{3}J = 4,9, {}^{4}J = 2,1, H_{eq}-C(4)); 3,812 (m, H-C(3)); 4,388 (d, {}^{2}J = 12,2, H-C(7)); 4,018 (d, {}^{2}J = 12,2, H-C(7)). {}^{13}C-NMR (CDCl_3, 50 MHz): 20,00 (q, CH_3-C(5)); 20,84 (q, CH_3CO); 24,86 (q, CH_3-C(1)); 27,69 (q, CH_3-C(1)); 34,43 (s, C(1)); 41,59 (t, C(4)); 48,14 (t, C(2)); 63,53 (d, C(3)); 65,25 (t, C(7)); 65,45 (s, C(5), C(6)); 170,40 (s, CH_3CO). CI-MS: 229 (100, M^+), 211 (31, M^+ - H_2O), 169 (21), 151 (22), 95 (10).$

Daten von **21**: Farbloses Öl. $[α]_{20}^{20} = +3,9$ ($c = 3,04 \cdot 10^{-2}$ M CHCl₃). IR (Film): 3420*s*, 2963*s*, 2940*s*, 2875*m*, 1744*s*, 1660*w*, 1485*w*, 1453*w*, 1405*w*, 1380*m*, 1367*m*, 1335*w*, 1245*s*, 1180*w*, 1132*m*, 1090*m*, 1040*s*, 982*m*, 947*w*, 894*w*, 912*w*, 872*w*, 805*w*, 740*w*, 665*w*. ¹H-NMR (CDCl₃, 400 MHz): 1,092, 1,135, 1,376 (3*s*, 3 CH₃); 1,303 (*ddd*, ²*J* = 12,8, ³*J* = 3,7, ⁴*J* = 1,5, H_{eq}-C(2)); 1,539 (*dd*, ²*J* = 12,8, ³*J* = 10,2, H_{ax}-C(2)); 1,887 (*dd*, ²*J* = 14,9, ³*J* = 8,2, H_{ax}-C(4)); 2,065 (*s*, Ac); 2,158 (*ddd*, ²*J* = 14,9, ³*J* = 6,3, ⁴*J* = 1,5, H_{eq}-C(4)); 3,830 (*m*, H-C(3)); 3,971 (*d*, ²*J* = 12,3, H-C(7)); 4,504 (*d*, ²*J* = 12,3, H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 20,47 (*q*, CH₃CO); 21,51 (*q*, CH₃-C(5)); 24,87 (*q*, CH₃-C(1)); 26,26 (*q*, CH₃-C(1)); 34,33 (*s*, C(1)); 39,21 (*t*, C(4)); 43,97 (*t*, C(2)); 63,61 (*d*, C(3)); 63,68 (*s*, C(5)); 63,85 (*t*, C(7)); 66,48 (*s*, C(6)); 170,26 (CH₃CO). CI-MS: 229 (100, *M*⁺), 211 (98, *M*⁺ - H₂O), 169 (15), 151 (21), 117 (11), 95 (8).

11. $(1R_2R_4S)$ - und $(1R_2R_4R)$ -Essigsäure-(1,2-epoxy-4-pivaloyloxy-2,6,6-trimethylcyclohexan-1-methyl)ester (22 bzw. 23). 11.1. Die Lsg. von 4 g 20/21 in 30 ml trockenem Pyridin wurde bei 0° mit 8 ml Pivaloyl-chlorid versetzt und 12 h bei 4° gehalten. Danach wurde in Eiswasser gegossen, mit Et₂O extrahiert, die org. Phase mehrmals mit ges. CuSO₄- sowie ges. NaHCO₃-Lsg. und zum Schluss mit ges. NaCl-Lsg. ausgewaschen, getrocknet (Na₂SO₄) und eingedampft. Das Rohprodukt wurde an Kieselgel (Merck KG60, 230–400 mesh) mit Hexan/Et₂O 9:1 +0,1% MeOH unter leichtem Druck chromatographiert. Zuerst wurde 22 eluiert (GC: $t_R(200°)$ 4,64), darauf 23 (GC: $t_R(200°)$ 4,90).

Daten von **22**: Schneeweisse Kristalle. Schmp. $51,8-53^{\circ}$ (Mikroskop). $[\alpha]_{21}^{21} = -33$ ($c = 3,78 \cdot 10^{-2}$ M, CHCl₃). IR (CHCl₃): 3020w, 2975s, 2940m, 2875w, 1740s, 1725s, 1480m, 1460w, 1398w, 1383m, 1370m, 1305w, 1285m, 1250s, 1170s, 1150s, 1100w, 1087w, 1035s, 985w, 975w, 942w, 896w, 882w, 862w, 710w, 663w. ¹H-NMR (CDCl₃, 200 MHz): 1,13, 1,161, 1,38 (3s, 3 CH₃); 1,17 (s, (CH₃)₃C); 1-1,5 (m, H_{ax}-C(2)); *ca.* 1,60 (*ddd*, ²J \approx 13, ³J \approx 4, ⁴J \approx 1,5, H_{eq}-C(2)); *ca.* 1,80 (*dd*, ²J \approx 15, ³J \approx 8,5, H_{ax}-C(4)); 2,08 (s, CH₃-C(5)); *ca.* 2,40 (*ddd*, ²J \approx 15, ³J \approx 5,5, ⁴J \approx 1,5, H_{eq}-C(4)); 4,03 (*d*, ²J = 12, H-C(7)); 4,43 (*d*, ²J = 12, H-C(7)); 4,87 (m, H-C(3)). ¹³C-NMR (CDCl₃, 50 MHz): 20,32 (*q*, CH₃-C(5)); 20,83 (*q*, CH₃-C); 25,14 (*q*, CH₃-C(1)); 27,06 (*q*, (CH₃)₃C); 27,34 (*q*, CH₃-C(1)); 34,12 (*s*, C(1)); 37,50 (*t*, C(4)); 38,57 (*s*, (COO). CI-MS: 313 (29, *M*⁺), 211 (100), 151 (15). Anal. ber. für C₁₇H₂₈O₅ (312,41): C 65,36, H 9,03; gef.: C 65,61, H 9,14.

11.2. Zur Sicherstellung der Korrelation wurde l g reines 20 in 8 ml Pyridin mit 2 ml Pivaloyl-chlorid wie unter *a*) umgesetzt: 1,28 g (93%) 22. $[\alpha]_D^{20} = -29,70$ (*c* = 1,01, CHCl₃). NMR: übereinstimmend mit denjenigen aus *Exper. 11.1*.

Daten von 23: Farbloses Öl. $[\alpha]_{D}^{21} = +25,8$ ($c = 2,72 \cdot 10^{-2}$ M, CHCl₃). IR (CHCl₃): 3005w, 2975s, 2935m, 2875w, 1740s, 1730s, 1720s, 1480m, 1460m, 1398w, 1382m, 1370m, 1323w, 1287s, 1250s, 1170s, 1140m, 1090w, 1035s, 1003w, 980m, 940w, 900w, 883w, 875w, 715w, 665m. ¹H-NMR (CDCl₃, 200 MHz): 1,11, 1,15, 1,37 (3s, 3 CH₃); 1,16 (s, (CH₃)₃C); 1,0–1,4 (m, H_{eq}–C(2)); ca. 1,60 (dd, $^{2}J \approx ^{3}J \approx 12,5$, H_{ax}–C(2)); ca. 1,84 (dd, $^{2}J = 15$, $^{3}J = 10$, H_{ax}–C(4)); 2,07 (s, Ac); ca. 2,29 (ddd, $^{2}J = 15$, $^{3}J = 7$, $^{4}J = 1,5$, H_{eq}–C(4)); 3,96 (d, $^{2}J = 12$, H–C(7)); 4,53 (d, $^{2}J = 12$, H–C(7)); ca. 4,87 (m, H–C(3)). ¹³C-NMR (CDCl₃, 50 MHz): 20,80 (q, CH₃-CO); 21,88 (q, CH₃–C(5)); 23,73 (q, CH₃–C(1)); 26,13 (q, CH₃–C(1)); 27,03 (q, (CH₃)₃C); 34,66 (s, C(1)); 35,48 (t, C(4)); 38,53 (s, (CH₃)₃C); 39,50 (t, C(2)); 62,99 (s, C(5)); 63,51 (t, C(7)); 65,77 (d, C(3)); 66,36 (s, C(6)); 170,26 (s, COO); 178,12 (s, COO). CI-MS: 313 (100, M^+ + 1), 211 (91), 151 (43), 123 (8), 95 (5).

12. (1R,2R,4S)- und (1R,2R,4R)-1,2-Epoxy-4-pivaloyloxy-2,6,6-trimethylcyclohexan-1-methanol (24 bzw. 25). 12.1. Eine Lsg. von 7,6 g 20/21 in 55 ml abs. MeOH wurde mit 35 ml 0,5M KOH/MeOH versetzt. Nach 30 min wurde mit 200 ml Toluol verdünnt und auf ca. 150 ml eingeengt. Danach wurde in Et₂O aufgenommen, mehrmals mit ges. NaCl-Lsg. ausgewaschen, getrocknet (Na₂SO₄) und eingedampft. Trocknen i. HV. lieferte 6,32 g (96%) 24/25. Ein Teil wurde für anal. Zwecke durch SC an Kieselgel (*Merck KG 60, 230*-400 mesh) mit CHCl₃/Hexan 10:1 in 24, $t_R(200^\circ)$ 3,55, und 25, $t_R(200^\circ)$ 3,37, getrennt, wobei nur wenige Fraktionen mit reinen Isomeren erhalten wurden.

Daten von **24**: Farblose Kristalle. Schmp. $61-63^{\circ} [\alpha]_{20}^{20} = -10, 2 (c = 4, 10 \cdot 10^{-2} \text{ M CHCl}_3)$. IR (CHCl}_3): 3620w, 3480 (br.), 3000w, 2968s, 2930m, 2870w, 1720s, 1480m, 1460w, 1396w, 1380w, 1366w, 1285m, 1166s, 1097w, 1075w, 1032m, 1010w, 965w, 940w, 915w, 710w, 673w, 660w. ¹H-NMR (CDCl}_3, 200 MHz): 1,19, 1,175, 1,423 (3s, 3 CH}_3); 1,169 (s, (CH}_3)_3C); 1,2-1,5 (m, H_{ax}-C(2)); 1,60 (ddd, ²J = 13,8, ³J = 3,5, ⁴J = 1,5, H_{eq}-C(2)); 1,84 (dd, ²J = 15, ³J = 8, H_{ax}-C(4)); 2,39 (ddd, ²J = 15, ³J = 5,5, ⁴J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ²J = 15, ³J = 5,5, ⁴J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ³J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ³J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ³J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ³J = 1,5, H_{eq}-C(4)); 3,75 (d, ²J = 11,7, H-C(7)); 3,86 (d, ³J = 1,5, H_{eq}-C(4)); 3,75 (d, ³J = 1,7, H-C(7)); 3,86 (d, ^{3}J = 1,7, H-C(7));}

 ${}^{2}J = 11,7, H-C(7)$; 4,80 (br. s, OH); 4,83 (m, H-C(3)). ${}^{13}C$ -NMR (CDCl₃, 50 MHz): 19,84 (q, CH₃--C(5)); 25,00 (q, CH₃--C(1)); 26,69 (q, CH₃--C(1)); 27,04 (q, (CH₃)₃C); 33,86 (s, C(1)); 37,62 (t, C(4)); 38,53 (s, (CH₃)₃C); 42,56 (t, C(2)); 59,80 (t, C(7)); 64,66 (s, C(5)); 66,90 (d, C(3)); 68,08 (s, C(8)); 177,78 (s, C=O). CI-MS: 271 (30, $M^{++} + 1)$, 253 (2, $M^{++} + 1 - H_2O$), 169 (100), 151 (12), 95 (5). Anal. ber. für C₁₅H₂₆O₄ (270,37): C 66,64, H 9,69; gef.: C 66,45, H 9,49.

12.2. Für die Sicherstellung der Korrelation wurden 1,27 g 22 aus *Exper. 11.2* in 12 ml MeOH mit 3,5 ml 5% KOH in MeOH verseift. Der Alkohol 24 wurde durch SC gereinigt: 1,06 g (96%). $[\alpha]_D^{20} = -10,46$ (c = 0,908, CHCl₃). NMR und übrige Daten: in Übereinstimmung mit 24 aus *Exper. 12.1*.

Daten von **25**: Farbloses Öl. $[\alpha]_{D}^{20} = +40,5$ ($c = 2,29 \cdot 10^{-2}$ M CHCl₃). IR (CHCl₃): 3620w, 3500 (br.), 3024w, 3004w, 2970s, 2930m, 2905w, 2870w, 1715s, 1480m, 1460m, 1398m, 1372m, 1368m, 1322w, 1285s, 1168s, 1112m, 1080w, 1068w, 1033s, 1010w, 977w, 938w, 920w, 883w, 858w, 665w, 660w. ¹H-NMR (CDCl₃, 200 MHz): 1,116, 1,172, 1,392 (3s, 3 CH₃); 1,163 (s, (CH₃)₃C); 1,0–1,4 (m, H_{eq}-C(2)); 1,58 (dd, ²J \approx ³J \approx 12,5, H_{ax}-C(2)); 1,85 (dd, ²J = 15, ³J = 10, H_{ax}-C(4)); 2,27 (ddd, ²J = 15, ³J = 7,5, ⁴J = 1,3, H_{eq}-C(4)); 3,67 (d, ²J = 11,2, H-C(7)); 3,82 (d, ²J = 11,2, H-C(7)); 4,81 (br. s, OH); 4,83 (m, H-C(3)). ¹³C-NMR (CDCl₃, 50 MHz): 21,19 (q, CH₃-C(5)); 23,09 (q, CH₃-C(1)); 25,69 (q, CH₃-C(1)); 26,99 (q, (CH₃)₃C); 34,42 (s, C(1)); 35,54 (t, C(4)); 38,50 (s, (CH₃)₃C); 39,23 (t, C(2)); 57,91 (t, C(7)); 63,65 (s, C(5)); 65,77 (d, C(3)); 68,57 (s, C(6)); 178,12 (s, C=O). CI-MS: 271 (100, M^{++} +1), 253 (32, M^{++} +1 -H₂O), 211 (10), 169 (38), 151 (41), 135 (11), 95 (10).

13. (1R,2R,4S)- und (1R,2R,4R)-1,2-Epoxy-4-pivaloyloxy-2,6,6-trimethylcyclohexan-1-carbaldehyd (26 bzw. 27). 13.1. Eine Lsg. von 2,7 ml Oxalyl-chlorid in 70 ml CH₂Cl₂ wurde bei -50° mit 4,1 ml DMSO, nach 2 min mit 6,32 g 24/25 in 30 ml CH₂Cl₂ und schliesslich mit 22 ml (i-Pr)₂EtN versetzt. Das Gemisch wurde 4 h bei dieser Temp. gerührt und danach mit 20 ml H₂O versetzt. Das Kühlbad wurde entfernt und das Gemisch bei RT. noch mit 180 ml H₂O versetzt und 2mal mit je 400 ml Et₂O extrahiert. Die vereinigten Et₂O-Phasen wurden mit H₂O, ges. NaHCO₃- und ges. NaCl-Lsg. gewaschen, getrocknet (Na₂SO₄) und eingedampft. Das Rohprodukt wurde im Kugelrohr bei 130°/4·10⁻² Torr destilliert: 6,06 g (96%) 26/27. Wegen Oxydationsgefahr wurde auf eine Chromatographie verzichtet. Spektraldaten wurden an Proben gemessen, die ausgehend von reinem 24 bzw. 25 hergestellt wurden, s. *Exper. 13.2*.

13.2. Zur Sicherstellung der Korrelation wurden 1,05 g 24 wie in *Exper. 13.1* beschrieben mit 0,45 ml Oxalyl-chlorid, 0,68 ml DMSO und 3,7 ml (i-Pr)₂EtN oxydiert: 1,06 g 26. Analog wurde 27 aus 25 erhalten.

Daten von **26**: Farbloses Öl. $[\alpha l_{D}^{20} = -72,5 (CHCl_3)$. IR (CHCl_3): 3020w, 2970s, 2918m, 2875w, 1770w, 1722s, 1480m, 1463w, 1399w, 1385w, 1370m, 1315w, 1167s, 1075w, 1055w, 1033w, 970w, 940w, 882w. ¹H-NMR (CDCl_3, 200 MHz): 1,114, 1,313, 1,420 (3s, 3 CH_3); 1,183 (s, (CH_3)₃C); 1,0–1,45 (m, H_{ax}–C(2)); ca. 1,69 (dd, ²J ≈ 14 , ³J ≈ 6 , H_{eq}–C(2)); ca. 1,81 (dd, ²J ≈ 15 , ³J ≈ 6 , H_{eq}–C(4)); ca. 2,45 (dd, ²J ≈ 15 , ³J ≈ 6 , 5, H_{eq}–C(4)); ca. 4,90 (m, H–C(3)); 9,77 (s, H–CO). ¹³C-NMR (CDCl_3, 50 MHz): 20,55 (q, CH₃–C(5)); 26,20 (q, CH₃–C(1)); 27,02 (q, (CH₃)₃C, CH₃–C(1)); 33,08 (s, C(1)); 36,13 (t, C(4)); 38,50 (s, (CH₃)₃C); 40,68 (t, C(2)); 64,64 (s, C(5)); 66,43 (d, C(3)); 72,04 (s, C(6)); 177,66 (s, C=O); 200,17 (s, C=O). CI-MS: 269 (40, M^{++} +1), 269 (23), 239 (23), 223 (5), 183 (41), 167 (100), 139 (42), 121 (15), 103 (14).

Daten von **27**: Farbloses Öl. IR (CHCl₃): 3020w, 2973s, 2938m, 2875w, 1780w, 1722s, 1480m, 1462w, 1398w, 1385w, 1370m, 1325w, 1286s, 1168s, 1070w, 1060w, 1033m, 1015w, 1000w, 978w, 940w, 880w. ¹H-NMR (CDCl₃, 200 MHz): 1,106, 1,167, 1,334 (3s, 3 CH₃); 1,167 (s, (CH₃)₃C); 1,0–1,5 (m, H_{eq}–C(2)); *ca*. 1,64 (*dd*, ²*J* \approx ³*J* \approx 12,3, H_{ax}–C(2)); *ca*. 1,87 (*dd*, ²*J* \approx 15, ³*J* = 9, H_{ax}–C(4)); *ca*. 2,33 (*dd*, ²*J* \approx 15, ³*J* = 8, ⁴*J* \approx 1, H_{eq}–C(4)); *ca*. 4,90 (m, H–C(3)); 9,70 (s, H–CO). ¹³C-NMR (CDCl₃, 50 MHz): 21,20 (q, CH₃–C(5)); 23,67 (q, CH₃–C(1)); 26,12 (q, CH₃–C(1)); 26,99 (q, (CH₃)₃C); 33,73 (s, C(1)); 34,99 (t, C(4)); 38,50 (s, (CH₃)₃C); 39,03 (t, C(2)); 64,31 (s, C(5)); 65,44 (d, C(3)); 72,26 (s, C(6)); 178,02 (s, C=O); 200,67 (s, C=O). CI-MS: 269 (43, *M*⁺⁺ +1), 257 (64), 239 (100), 229 (17), 223 (7), 211 (7), 183 (79), 167 (81), 155 (23), 139 (62), 137 (84), 121 (15), 109 (15).

14. (I'S, 2'R, 4'S, 3E)- und (I'S, 2'R, 4'R, 3E)-4-(I', 2'-Epoxy-4'-pivaloyloxy-2', 6', 6'-trimethylcyclohexyl)-3buten-2-on (**28** bzw. **29**). Eine Mischung von 2,63 g **26/27** (5:3) und 9,415 g (2-Oxopropyliden)triphenylphosphoran in 65 ml Toluol wurde unter N₂ 12 h unter Rückfluss erhitzt. Nach Kühlen wurde von Ph₃PO abgenutscht, dieses mit wenig Et₂O/Hexan 2:1 gewaschen, das vereinigte Filtrat eingedampft und der Rückstand nochmals mit kaltem Et₂O/Hexan 2:1 digeriert und erneut von Ph₃PO getrennt. SC an Kieselgel (0,04–0,063 mm) mit Et₂O gab 3,25 g gereinigtes **28/29**. Die Trennung erfolgte an 325 g Kieselgel (*Merck* No. *15111*) mit Hexan/Et₂O 10:3. Umkristallisation aus CH₂Cl₂/Hexan: 1,03 g **28** bzw. 0,53 g **29**.

Daten von **28**: Schmp. 75,8–76,8°. GC (*Macherey-Nagel FS-SE-52*, 25 m, 'fused silica'-Kapillarsäule, 0,25 mm, 160°, H₂, 0,9 bar): $t_{\rm R}$ 6,64. [α]₂₀²⁰ = -99,8 (c = 0,972 CHCl₃). UV (EtOH): 229 (11750). CD (EtOH): 234 (-10,7). IR (CHCl₃): 3009*m*, 2970*s*, 2935*m*, 2875*m*, 1720*vs*, 1695*s*, 1675*s*, 1629*m*-*s*, 1481*m*, 1365*m*, 1284*s*, 1170*vs* (br.), 1042*w*, 987*m*. ¹H-NMR (CDCl₃, 200 MHz): 0,996 (s, CH₃); 1,182 (s, 4 CH₃); 1,236 (s, CH₃); 2,286 (s, CH₃); 1,360

 $(dd, {}^{2}J = 14, {}^{3}J(2,3) = 8, H_{ax}-C(2)); 1,698 (ddd, {}^{2}J = 14, {}^{3}J(2,3) = 3,3, {}^{4}J(2,4) \approx 0,9, H_{eq}-C(2)); 1,78 (dd, {}^{2}J = 16, {}^{3}J(3,4) = 6,4, H_{ax}-C(4)); 2,43 (ddd, {}^{2}J = 16, {}^{3}J(3,4) = 6,1, {}^{4}J(2,4) \approx 0,9, H_{eq}-C(4)); 4,95 (m, H-C(3)); 6,327, 7,042 (AB, J_{AB} = 15, H-C(7), H-C(8)). {}^{13}C-NMR (CDCl_3, 50 MHz): 20,08 (CH_3-C(5)); 25,65 (CH_3-C(9)^*); 27,08 ((CH_3)_3C); 28,36 (CH_3-C(1)^*); 28,45 (CH_3-C(1)^*); 34,38 (C(1)); 36,32 (C(4)); 38,56 ((CH_3)_3C); 40,89 (C(2)); 65,71 (C(5)); 66,83 (C(3)); 69,69 (C(6)); 132,66 (C(8)); 141,54 (C(7)); 177,75 (C=O); 197,22 (C(9)). Cl-MS: 309 (59,4, M^{+} + 1), 207 (M^{+} - Pivalinsäure, 100). Anal. ber. für C_{18}H_{28}O_4 (308,42): C 70,10, H 9,15; gef.: C 69,83, H 9,22.$

Daten von **29**: Schmp. 51,5–52,8°. GC (s. oben): $t_{\rm R}$ 6,33. [α]_D²⁰ = -22,5 (c = 0,890, CHCl₃). UV (EtOH): 229 (12080). CD (EtOH): 234 (-10,0). IR (CHCl₃): 3010*m*, 2970*s*, 2935*m*, 2865*m*, 1720*vs*, 1700*s*, 1676*s*, 1630*s*, 1482*s*, 1462*m*, 1382*m*, 1369*s*, 1308*m*, 1288*s*, 1272*m*, 1170*vs* (br.), 1140*m*–*s*, 1121*m*, 1033*m*, 985*s*. ¹H-NMR (CDCl₃, 200 MHz): 0,977 (s, CH₃); 1,16 (s, 4 CH₃); 1,259 (s, CH₃); 2,278 (s, CH₃); 1,348 (ddd, ${}^{2}J$ = 12,5, ${}^{3}J(2,3)$ = 4,1, ${}^{4}J(2,4) \approx 1,2$, H_{eq}-C(2)); 1,648 ('t', ${}^{2}J$ = ${}^{3}J(2,3)$ = 12,5, H_{ax}-C(2)); 1,849 (dd, ${}^{2}J$ = 15, ${}^{3}J(2,3)$ = 9,5, H_{ax}-C(4)); 2,325 (ddd, ${}^{2}J$ = 15, ${}^{3}J(2,3)$ = 7,6, ${}^{4}J(2,4) \approx 1,3$, H_{eq}-C(4)); 4,95 (*m*, H–C(3)); 6,265, 6,959 (*AB*, J_{AB} = 16, H–C(7), H–C(8)). ¹³C-NMR (CDCl₃, 50 MHz): 21,02, 24,54, 26,75, 27,02, 28,30, 34,82, 35,02, 38,52, 38,79, 64,98, 65,68, 70,38, 133,24, 140,57, 178,11, 197,12. CI-MS: 309 (24, M^{+r} + 1), 207 (100). Anal. ber. für C₁₈H₂₈O₄ (308,42): C 70,10, H 9,15; gef.: C 70,29, H 9,28.

15. (1'S,2'R,4'S,2E,4'E)- und (1'S,2'R,4'S,2Z,4'E)-5-(1',2'-Epoxy-4'-pivaloyloxy-2',6',6'-trimethylcyclohexyl)-3-methylpenta-2,4-diensäure-methylester (30 bzw. 31). Zu einer Lsg. von 0,9 g t-BuOK in 18 ml THF wurdebei 0° eine Lsg. von 2,5 g C₅-Phosphonat [21] in 7 ml THF getropft. Nach 30 min wurde 1,0 g 26 in 4 ml THFzugegeben, und nach 4 h Rühren bei RT. wurde wie üblich aufgearbeitet und 30/31 an Silicagel (*Lichroprep Si-60*)mit CH₃Cl₂/Hexan 4:1 + 0,25% MeOH getrennt.

Daten von **30**: Kristallisation aus Pentan, -20° . Schmp. 72–73,5°. $t_{\rm R}$ (180°) 17,27. $[\alpha]_D^{20} = -75,8$ (c = 1,014, CHCl₃). UV (Hexan): 259 (27 340). CD (Hexan): 266 (-4,4). IR (Film): 2960s, 2930s, 2857*m*, 1722vs, 1635*w*, 1615*s*, 1481*m*, 1435*m*, 1385*m*, 1360*m*, 1284*s*, 1233*s*, 1158vs, 1100*w*, 1040*m*, 1008*w*, 977*m*, 929*w*, 873*w*. ¹H-NMR (CDCl₃, 400 MHz): 0,993 (*s*, CH₃(16)); 1,174 (*s*, CH₃(17)); 1,872 (*s*, (CH₃)₃C); 1,204 (*s*, CH₃-C(5)); 1,352 (*dd*, ²*J* = 13,5, ³*J*(2,3) = 8, H_{ax}-C(2)); 1,543 (*s*, (?)); 1,698 (*ddd*, ²*J* = 14, ³*J*(2,3) = 3,6, ⁴*J* \approx 1, H_{eq}-C(2)); 1,768 (*dd*, ²*J* = 15, ³*J*(3,4) = 6,6, H_{ax}-C(4)); 2,301 (*d*, *J* \approx 1, CH₃-C(9)); 2,422 (*ddd*, ²*J* = 15, ³*J*(3,4) = 6, ⁴*J*(2,4) \approx 1, H_{eq}-C(4)); 3,717 (*s*, CH₃O); *ca*. 4,93 (*m*, H-C(3)); 5,817 (*d*, *J* = 1, H-C(10)); 6,318 (*s*!, H-C(7), H-C(8)). ¹³C-NMR (CDCl₃, 50 MHz): 13,90 (CH₃-C(9)); 20,13 (CH₃-C(5)); 25,56 (CH₃-C(1)); 27,10 ((CH₃)₃C); 28,50 (CH₃-C(1)); 34,57 (C(1)); 36,54 (CH₂(4)); 38,56 ((CH₃)₃C); 41,16 (CH₂(2)); 51,02 (CH₃O); 65,53 (C(5)); 67,06 (C(3)); 70,16 (C(6)); 119,38 (C(10)); 130,38 (C(7)); 136,44 (C(8)); 150,95 (C(9)); 167,40 (C=O); 177,78 (C=O). CI-MS: 365 (100, $M^{++} + 1$).

Daten von **31**: Kristallisation aus Hexan, -20° . Schmp. 72,8-73,6°. $t_{\rm R}$ (180°) 14,69. [α]_D²⁰ = -25,3 (c = 0,870, CHCl₃). UV (Hexan): 261 (22140). CD (Hexan): 201 (-11,2), 272 (+1,6). IR (CHCl₃): 2970s, 2930s, 2875m, 1715vs, 1635m, 1605s, 1481s, 1453m-s, 1435m, 1400w, 1380s, 1367m, 1285s, 1235s, 1165vs, 1100w, 1042m, 989m, 975w, 921w, 865w. ¹H-NMR (CDCl₃, 400 MHz): 1,033 (s, CH₃-C(1)); 1,187 (s, (CH₃)₃C); 1,194 (s, CH₃-C(1)); 1,219 (s, CH₃-C(5)); 1,343 (dd, ²J = 13,6, ³J(2,3) = 8,0, H_{ax}-C(2)); 1,717 (ddd, ²J = 13,5, ³J(2,3) = 3,7, ⁴J(2,4) = 0,9, H_{eq}-C(2)); 1,771 (dd, ²J = 15,2, ³J(3,4) = 6,5, H_{ax}-C(4)); 2,019 (d, $J \approx 1,2$, CH₃-C(9)); 2,426 (ddd, ²J = 15, ³J(4,3) = 5,5, ³J(2,4) = 0,8, H_{eq}-C(4)); 3,709 (s, CH₃O₅); ca.4,93 (m, H-C(3)); 5,712 (d, H-C(10)); 6,272, 7,634 (AX, ³J = 15,8, H-C(7), H-C(8)). CI-MS: 365 (100, M^{+} + 1), 263 (29, M + 1 – Pivalinsäure).

16. (1'S, 2'R, 4'R, IE, 4E)- und (1'S, 2'R, 4'R, 2Z, 4E)-5-(1', 2'-Epoxy-4'-pivaloyloxy-2', 6', 6'-trimethylcyclohexyl)-3-methylpenta-2,4-diensäure-methylester (**32**bzw.**33**). Die Lsg. von 15 g C₅-Phosphonat [21] (59,9 mmol) in150 ml abs. THF wurde bei 0° mit 4,65 g (35 mmol) t-BuOK versetzt. Das Gemisch wurde 15 min bei 0° gerührt.dann eine Lsg. von 5,55 g (20,7 mmol)**26/27**in 15 ml abs. THF zugesetzt und weitere 30 min bei 0° gerührt. Danachwurde das Kühlbad entfernt und über Nacht bei RT. gerührt. Nach Eindampfen wurde in H₂O aufgenommen, dieH₂O-Phase mit NaCl gesättigt, mehrmals mit Et₂O extrahiert, die vereinigte Et₂O-Phase mit H₂O und ges. NaClgewaschen, getrocknet (Na₂SO₄) und eingedampft. Das dunkelrote Rohprodukt enthielt laut GC**30** $(<math>t_R$ (180°) 17,27), **31** (t_R 14,69), **32** (t_R 16,41) und **33** (t_R 14,29) im Verhältnis von ca. 36:17:31:6,5. Das Rohprodukt wurde an Kieselgel (Merck, KG 60, 230-400 mesh) mit Et₂O/Hexan 1:9 unter leichtem Druck chromatographiert: 0,89 g reines **31** und 4,85 g Stereoisomerengemisch (total 5,74 g (76%)). Durch präp. HPLC (Merck LiChrosorb Si 100, 5 μ , 25 × 250 mm) mit Hexan/CH₂Cl₂ 5:1 +0,2% MeOH wurde das Stereoisomerengemisch in reines **32** und **33** aufgetrennt (**30** und **31** identisch mit Produkten aus Exper. 15).

Daten von 32: Kristallisation aus Hexan, -20° . Schmp. 72,8–73,6°. [α]_D²⁰ = +1,0 (c = 0,704, CHCl₃). UV (Hexan): 259 (28430). CD (Hexan): 268 (-3,4). IR (CHCl₃): 2970s, 2935s, 2857m, 1716vs, 1636w, 1614w, 1481s, 1437m, 1387m, 1369m, 1359m, 1288s, 1237s, 1164vs, 1111m, 1045w, 1033w, 1000w, 976s, 878m. ¹H-NMR (CDCl₃).

400 MHz): 0,983 (s, CH₃(16)); 1,167 (s, CH₃(17)); 1,173 (s, (CH₃)₃C); 1,236 (s, CH₃-C(5)); 1,349 (ddd, ²*J* = 12, ³*J*(2,3) = 4,1, ⁴*J*(2,4) = 1,5, H_{eq}-C(2)); 1,664 ('*t*', ²*J* \approx ³*J*(2,3) \approx 12,5, H_{ax}-C(2)); 1,860 (dd, ²*J* = 15, ³*J*(3,4) = 9,5, H_{ax}-C(4)); 2,293 (d, *J* = 1,2, CH₃-C(9)); 2,315 (ddd, teilweise verdeckt, ²*J* = 14,7, ³*J*(3,4) = 7,4, ⁴*J*(2,4) = 1,5, H_{eq}-C(4)); 3,717 (s, CH₃O); *ca.* 4,90 (*m*, H-C(3)); 5,811 (*d*, *J* = 1,0, H-C(10)); *ca.* 6,25, *ca.* 6,28 (*AB*, *J_{AB}* = 15,7, H-C(7), H-C(8)). ¹³C-NMR (CDCl₃): 13,85 (CH₃-C(9)); 21,17 (CH₃-C(15)); 24,64 (CH₃-C(1)); 26,73 (CH₃-C(1)); 27,03 ((CH₃)₃C); 35,01 (C(1)); 35,20 (C(4)); 38,52 ((CH₃)₃C); 51,01 (CH₃O); 64,66 (C(5)); 65,88 (C(3)); 70,83 (C(6)); 119,49 (C(10)); 129,76 (C(7)); 137,02 (C(8)); 150,81 (C(9)); 167,32 (C=O); 178,15 (C=O). Cl-MS: 365 (*M*⁺ + 1).

Daten von 33: Öl. $[\alpha]_{D}^{20} = +52.9 (c = 0,350, CHCl_3)$. UV (Hexan): 261 (21 300). CD (Hexan): 190 (-7,8), 200 (-11,0), 261 (2,9). 1R (CHCl_3): 2975s, 2935s, 1912m, 2875m, 1716vs, 1641m, 1609s, 1483s, 1457m, 1438m, 1400w, 1484m s, 1370m-s, 1327w, 1290s, 1168vs, 1146s, 1127s, 1050w-m, 980s. ¹H-NMR (CDCl_3): 1,013 (s, CH_3(16)); 1,165 (s, CH_3(17)); 1,206 (s, (CH_3)_3C); 1,219 (s, CH_3-C(5)); 1,330 (ddd, ²J = 12,2, ³J(2,3) = 4,1, ⁴J(2,4) = 1,6, H_{eq}-C(2)); 1,686 ('t', ²J \approx ³J(2,3) = 12,4, H_{ax}-C(2)); 1,859 (dd, ²J = 14,9, ³J(3,4) = 9,5, H_{ax}-C(4)); 2,006 (d, J = 1,2, CH_3-C(9)); 2,302 (ddd, ²J = 14,9, ³J(3,4) = 7,7, ⁴J(2,4) = 1,5, H_{eq}-C(4)); 3,701 (s, CH_3O); ca. 4,9 (m, H-C(3)); 5,707 (d, J = 1,0, H-C(10)); 6,196, 7,611 (AX, ²J_{AX} = 16,0, H-C(7), H-C(8)). ¹³C-NMR (CDCl_3): 20,43 (CH_3-C(9)); 20,96 (CH_3-C(5)); 25,66 (CH_3-C(1)); 27,04 ((CH_3)_3C); 28,47 (CH_3-C(1)); 34,48 (C(1)); 36,52 (C(4)); 38,48 ((CH_3)_3C); 41,16 (C(2)); 50,95 (CH_3O); 65,17 (C(5)); 67,12 (C(3)); 69,91 (C(6)); 117,55 (C(10)); 130,84* (C(7)); 131,88* (C(8)); 149,11 (C(9)); 166,20 (C=O), 177,66 (C=O). CI-MS: 365 (100, M⁺ + 1).

17. (1'S,2'R,4'S,2E,4E)-, (1'S,2'R,4'S,2Z,4E)-, (1'S,2'R,4'R,2E,4E)- und (1'S,2'R,4'R,2Z,4E)-5-(1',2'-Epoxy-4'-hydroxy-2',6',6'-trimethylcyclohexyl)-3-methylpenta-2,4-diensäure-methylester (**34**, **35**, **36** bzw. **37**). 17.1. Eine Lsg. von 50 mg **30** in 0,8 ml abs. Diglyme wurde zu einer Lsg. von 55 mg NaBH₄ und 125 mg LiBr in 1,5 ml abs. Diglyme, getropft, welche 2 h bei RT. gestanden hatte. Nach 5½ h wurde etwas H₂O zugegeben und mit El₂O extrahiert. Nach üblicher Aufarbeitung und Chromatographie an Silicagel mit El₂O(Hexan 19:1 wurden 27,5 mg (72%) festes **34** erhalten. UV (EtOH): 263 (24730). CD (EtOH): 269 (-4,1). IR (CHCl₃): 3620m, 3035m, 3002m, 2965s, 2932s, 2873m, 1712vs, 1637m, 1617s, 1440m, 1384m, 1361m-s, 1283m, 1235s, 1166vs, 1130m, 1046m s, 1029m-s, 978m-s. ¹H-NMR (CDCl₃, 200 MHz): 0,962 (s, CH₃(16)); 1,153 (s, CH₃(17)); 1,172 (s, CH₃-C(5)); ca. 1,18 (dd, H_{ax}-C(2)); ca. 1,6 (m, 2–3 H, OH, H_{eq}-C(2), H_{ax}-C(4)); 2,283 (d, J = 2, CH₃-C(9)); ca. 2,4 (ddd, H_{eq}-C(4)); 3,705 (s, CH₃O); ca. 3,9 (m, H-C(3)); 5,796 (d, H-C(10)); 6,29 (AB, ²J_{AB} = 13, H-C(7), H-C(8)).

17.2. Analog 17.1 wurden aus 40 mg **31** mit 120 mg LiBr und 53 mg NaBH₄ in total 2,3 ml Diglyme nach 21 h 24 mg **35** gewonnen. Schmp. 138,5–139° (aus Et₂O/Hexan; [8]: Schmp. 137–139°). UV (EtOH): 263 (21 500). CD (EtOH): 203 (-12,0), 267 (+1,7). IR (CHCl₃): 3612m, 3035w, 3005m, 2965s, 2958s, 2930m–s, 1710vs, 1637m, 1606s, 1452m, 1435m, 1382s, 1367m, 1280w, 1232vs, 1163vs, 1132w, 1045s, 1038m, 986m, 920w. IR (KBr): 3476s, 3085w, 3035w, 2980s, 2963s, 2940s, 2930s, 2875m, 2851m, 1690vs, 1633vs, 1598vs, 1454s, 1434s, 1403s, 1382s, 1372m, 1306w, 1283s, 1265m, 1247vs, 1183vs, 1172vs, 1147s, 1128s, 1115m, 1056vs, 1050s, 1033m, 989vs, 953w, 937w, 927w–m, 914w–m, 900w, 881m, 869m, 857m, 846m, 827m, 772w, 749w, 723w, 697m. ¹H-NMR (CDCl₃, 200 MHz): 1,017 (s, CH₃(16)); 1,150 (s, CH₃(17)); 1,211 (s, CH₃–C(5)); ca. 1,25 (H_{ax}–C(2)); ca. 1,65 (m, H_{ax}–C(4), H_{eq}–C(2)); 2,01 (d, $J \approx 1,2$, CH₃–C(9)); ca. 2,4 (ddd, H_{eq}–C(4)); 3,704 (s, CH₃O); ca. 3,9 (m, H–C(3)); 5,703 (s, H–C(10)); 7,613, 6,273 (AX, ²J = 16, H–C(8), H–C(7)). CI-MS: 281 (100, M⁺ + 1).

17.3. Analog 17.1 wurden aus 45 mg **32** mit 120 mg LiBr und 55 mg NaBH₄ in 2,3 ml Diglyme nach 16 h bei RT. 20,5 mg amorphes **36** gewonnen. UV (EtOH): 263 (24730). CD (EtOH): 268–274 (-3,3). IR (CHCl₃): 3610*m*, 3480*w* (br.), 3030*m*, 3005*s*, 2965*s*, 2955*s*, 2933*s*, 2877*m*, 1710*vs*, 1637*m*, 1614*s*, 1470*m*, 1465*m*, 1436*s*, 1388*m*-*s*, 1382*m*-*s*, 1367*m*-*s*, 1359*s*, 1315*w*, 1283*m*, 1239*vs*, 1190*m*, 1164*vs*, 1125*m*-*s*, 1074*w*, 1034*s*, 1003*w*, 977*s*, 954*w*, 937*w*, 926*w*, 909*w*, 878*m*. ¹H-NMR (CDCl₃, 200 MHz): 0,998 (*s*, CH₃(16)); 1,178 (*s*, CH₃(17), CH₃-C(5)); *ca*. 1,35 (*ddd*, H_{eq}-C(2)); *ca*. 1,6 (*dd*, H_{ax}-C(2)); *ca*. 1,9 (*dd*, H_{ax}-C(4)); *ca*. 2,2 (*dd*?, H_{eq}-C(4)); 2,289 (*d*, *J* = 1,1, CH₃-C(9)); 3,714 (*s*, CH₃O); *ca*. 3,9 (*m*, H-C(3)); 5,808 (*d*, *J* = 1,I, H-C(10)); 6,275 (*AB*, *J_{AB}* = 13,6, H-C(7), H-C(8)). EI-MS: 280 (12, *M*⁺⁺).

17.4. Analog 17.1 wurden aus 12 mg **33** mit 60 mg LiBr und 27 mg NaBH₄ in 1 ml Diglyme nach 4 h bei RT. 8 mg (87%) **37** gewonnen. Schmp. 144,4–145,1° (aus Et₂O/Hexan [8]: Schmp. 144–145°). UV (EtOH): 263 (21 600). CD (EtOH): 203 (-10,8), 268 (+2,2). 1R (CHCl₃): 3580w, 3040w, 2985m, 2940s, 2912s, 2835m, 2820m, 1705s, 1633m, 1601m–s, 1448m–s, 1430m–s, 1377m–s, 1311m, 1257s, 1230s (br.), 1158vs, 1120m, 1098m, 1069m, 1027m–s, 980w–m. ¹H-NMR (CDCl₃, 400 MHz): 1,047 (s, CH₃(16)); 1,162 (s, CH₃(17)); 1,228 (s, CH₃–C(5)); 1,359 (ddd, ²J = 12,7, ³J(2,3) = 3,8, ⁴J(2,4) = 1,4, H_{eq}–C(2)); 1,635 (dd, ²J = 12,6, ³J(2,3) = 10,7, H_{ax}–C(2)); 1,906 (dd, ²J = 14,9, ³J(3,4) = 8,3, H_{ax}–C(4)); 2,011 (d, J = 1,1, CH₃–C(9)); 2,203 (ddd, ²J = 15,5, ³J(3,4) = 7,7, ⁴J(2,4) = 1,4, H_{eq}–C(4)); 3,707 (s, CH₃O); 5,713 (s, H–C(10)); 6,207, 7,335 (AB, J_{AB} = 16, H–C(7), H–C(8)). EI-MS: 280 (6, M^+). 18. (1'S,2'R,4'S,2E,4E)-5-(1',2'-Epoxy-4'-hydroxy-2',6',6'-trimethylcyclohexyl)-3-methylpenta-2,4-dienol (38). Zur Lsg. von 230 mg 30 in 20 ml abs. Et₂O wurden bei -70° 0,6 ml DIBAH in Hexan (ca. 2,7 mmol) gegeben. Nach 30 min wurden 0,5 ml H₂O/MeOH 1:1 zugetropft. Dann wurde das Gemisch 60 min bei RT. weitergerührt, mit etwas AcOEt versetzt, über *Celite* filtriert und eingedampft. Der Rückstand wurde durch SC an Silicagel mit Et₂O/MeOH 49:1 chromatographiert und die Diol-Fraktion aus AcOEt/Hexan umkristallisiert: 150 mg (94%) 38. Schmp. 98,7–99,5°, [α]_D²⁰ = -81,3 (c = 0,980, CHCl₃). Übrige Spektraldaten, s. *Exper. 25*.

Herstellung und Eigenschaften von 39, s. Exper. 25.

19. (-)-(1S,2R)-1,2-Epoxy-4,4-(ethylendioxy)-2,6,6-trimethylcyclohexan-1-carbaldehyd (40). Wie in Exper. 13 beschrieben, wurden 21,7 g (95 mmol) 16 mit Oxalyl-chlorid/DMSO oxydiert. Das Rohprodukt wurde in Et₂O gelöst und mehrmals mit H₂O gewaschen, die Et₂O-Phase getrocknet (Na₂SO₄) und eingedampft und der Rückstand im Kugelrohr bei 130°/4·10⁻² Torr destilliert: 18,3 g (85%) 40. Schwach gelbes Öl. t_R (170°) 3,87. [α]_D² = -57 ($c = 3,8 \cdot 10^{-2}$ m CHCl₃). IR (Film): 2970s, 2935s, 2885s, 1728s, 1640w, 1470m, 1450m, 1405w, 1370s, 1320w, 1300w, 1255m, 1215s, 1130s, 1095s, 1060s, 1020s, 985s, 951m, 863m, 802m, 750m, 695m. ¹H-NMR (CDCl₃, 200 MHz): 1,084 (s, CH₃-C(1)); 1,316 (s, CH₃-C(1)); ca. 1,34 (dd, ²J \approx 14, ⁴J \approx 2, H_{eq}-C(2)); 1,465 (s, CH₃-C(5)); ca. 1,71 (d, ²J \approx 14, H_{ax} -C(2)); ca. 2,09 (dd, ²J \approx 15,5, ⁴J \approx 2, H_{eq}-C(4)); ca. 2,29 (d, ²J = 15,5, H_{ax}-C(4)); ca. 3,90 (m, OCH₂CH₂O); 9,79 (s, H-CO). ¹³C-NMR (CDCl₃, 50 MHz): 20,86 (q, CH₃-C(5)); 24,75 (q, CH₃-C(1)); 26,98 (q, CH₃-C(1)); 33,87 (s, C(1)); 41,19 (t, C(4)*); 42,86 (t, C(2)*); 63,63 (d, CH₂O); 64,16 (d, CH₂O); 64,33 (s, C(5)); 71,97 (s, C(6)); 106,60 (s, C(3)); 200,69 (s, C=O). CI-MS: 227 (100, M^{++} + 1), 211 (5), 207 (17), 197 (15), 183 (10), 171 (9), 160 (8), 141 (9), 137 (9), 129 (9), 123 (11), 97 (29).

20. (1'S,2'R,3E)-4-[1',2'-Epoxy-4',4'-(ethylendioxy)-2',6',6'-trimethylcyclohexyl]-3-buten-2-on (41). Zu einer Lsg. von 0,81 g (3,58 mmol) 40 in 25 ml Toluol unter N2 wurden 2 g (6,28 mmol) (2-Oxopropyliden)triphenylphosphoran gegeben. Nach ca. 48 h Kochen unter Rückfluss, Abkühlen und Eindampfen wurde der Rückstand in Et₂O gelöst, die Et₂O-Lsg. filtriert und über Nacht bei 0° aufbewahrt. Danach wurde vom ausgefallenen Ph₃PO abgetrennt, die Lsg. eingedampft und der Rückstand im Kugelrohr bei $ca. 145^{\circ}/3 \cdot 10^{-2}$ Torr destilliert: 0,71 g (75%) 41. $t_{\text{R}} (190^\circ) 6,29$. Farblose Prismen aus Et₂O/Hexan. Schmp. 78–79°. $[\alpha]_{\text{D}}^{20} = -76 (c = 2,98 \cdot 10^{-2} \text{ m})$ CHCl₁). UV (MeOH): 232,5 (11800). CD (MeOH): 206,5 (0), 234 (-10,5), 282 (0), 325 (+0,3), 362 (0). IR (CHCl₂): 3010m, 2965s, 2930m, 2883m, 1695m, 1675s, 1630s, 1555w, 1469w, 1450w, 1420w, 1384m, 1367s, 1323w, 1305w, 1278w, 1248s, 1172w, 1132m, 1090s, 1045m, 1020m, 985s, 950m, 918w, 910w, 870w, 665w. ¹H-NMR (CDCl₃, 200 MHz): 0,967 (s, CH₃(16)); 1,186 (s, CH₃(17)); 1,288 (s, CH₃-C(5)); ca. 1,36 (dd, ²J \approx 13,8, ⁴J \approx 2, H_{ea}-C(2)); ca. 1,70 (d, ${}^{2}J \approx 13.8$, H_{ax} -C(2)); ca. 2,05 (dd, ${}^{2}J \approx 16$, ${}^{4}J \approx 2$, H_{eq} -C(4)); ca. 2,27 (d, ${}^{2}J \approx 16$, H_{ax} -C(4)); 2,88 (s, CH₃-C(5)); ca. 3,90 (m, OCH₂CH₂O); 6,32, 7,04 (AB, J_{AB} = 15,7, H-C(8), H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 20,74 (q, CH₃-C(5)); 25,63 (q, CH₃-C(1)); 27,21 (q, CH₃-C(1)); 27,95 (q, CH₃-C(9)); 34,79 (s, C(1)); 40,76 (t, C(4)*); 42,08 (t, C(2)*); 63,48 (t, CH₂O); 63,98 (t, CH₂O); 64,95 (s, C(5)); 70,06 (s, C(6)); 106,57 (s, C(3)); 133,02 (d, C(8)); 141,31 (d, C(7)); 197,08 (s, C(9)). CI-MS: 267 (91, M⁺⁺ + 1), 249 (7), 223 (10), 209 (59), 205 (35), 181 (16), 153 (5), 129 (27), 123 (100), 87 (93). Anal. ber. für C₁₅H₂₂O₄ (266,34): C 67,64, H 8,33; gef.: C 67,41, H 8,33.

21. (1'S,2'R,2E,4E)- und (1'S,2'R,2'Z,4E)-5-[1',2'-Epoxy-4',4'-(ethylendioxy)-2',6',6'-trimethylcyclohexyl]-3-methylpenta-2,4-diensäure-methylester (42 bzw. 43). Zu 18,20 g (80,3 mmol) 40 in 500 ml THF wurden wiein Exper. 21 beschrieben 40 g (159,8 mmol) C₅-Phosphonat [15] gegeben. Nach der Aufarbeitung wurde dasRohprodukt an Kieselgel (Mallinckrodt, 100 mesh) mit Hexan/Et₂O 8:2 +0,5% MeOH unter leichtem Druckchromatographiert: 15,86 g 42, gefolgt von 2,26 g 43 (total 18,2 g (70%)).

Daten von **42**: Farblose Flüssigkeit. [a]²¹_D = −43,7 ($c = 3,32 \cdot 10^{-2}$ m, CHCl₃). UV (EtOH): 264 (26000). CD (EtOH): 216 (0), 268 (−3,6), 320 (0). IR (Film): 2960*s*, 2925*m*, 2880*m*, 1715*s*, 1634*w*, 1615*s*, 1435*m*, 1385*m*, 1364*m*, 1320*w*, 1275*w*, 1230*s*, 1190*w*, 1160*s*, 1132*w*, 1090*s*, 1045*m*, 1018*w*, 980*s*, 949*w*, 927*w*, 875*m*, 845*w*, 810*w*, 800*w*, 743*w*, 723*w*, 704*w*. ¹H-NMR (CDCl₃, 200 MHz): 0,958 (*s*, CH₃(16)); 1,174 (*s*, CH₃(17)); 1,253 (*s*, CH₃--C(5)); *ca*. 1,35 (*dd*, ²*J* ≈ 13,5, ⁴*J* = 2, H_{eq}-C(2)); *ca*. 1,71 (*d*, ²*J* ≈ 13,5, H_{ax}-C(2)); *ca*. 2,04 (*dd*, ²*J* = 15,6, ⁴*J* = 2, H_{eq}-C(4)); *ca*. 2,27 (*d*, ²*J* = 15,8, H_{ax}-C(4)); 2,295 (*d*, ⁴*J* = 1,2, CH₃-C(9)); 3,712 (*s*, CH₃O); *ca*. 3,90 (*m*, OCH₂CH₂O); *ca*. 5,81 (*m*, H-C(10)); *ca*. 6,32 (*s*!, H-C(7), H-C(8)). ¹³C-NMR (CDCl₃, 50 MHz): 13,85 (*q*, CH₃-C(9)); 21,03 (*q*, CH₃-C(5)); 25,87 (*q*, CH₃-C(1)); 27,35 (*q*, CH₃-C(1)); 35,10 (*s*, C(1)); 41,05 (*t*, C(4)*); 42,27 (*t*, C(2)*); 50,97 (*q*, CH₃O); 63,59 (*t*, CH₂O); 64,09 (*t*, CH₂O); 64,85 (*s*, C(5)); 70,70 (*s*, C(6)); 106,91 (*s*, C(3)); 119,23 (*d*, C(10)); 130,53 (*d*, C(7)); 136,71 (*d*, C(8)); 151,01 (*s*, C(9)); 167,38 (*s*, C(11)). MS: 322 (10, *M*⁺⁺), 307 (2), 263 (5), 251 (3), 236 (33), 221 (37), 177 (16), 161 (14), 133 (19), 127 (22), 119 (19), 113 (30), 86 (77), 71 (30), 58 (27), 43 (100).

Daten von 43: Farblose Flüssigkeit. $[\alpha]_{D}^{21} = +11,4$ ($c = 1,95 \cdot 10^{-2}$ M, CHCl₃). UV (EtOH): 264 (22100). CD (EtOH): 205 (-6,3), 239 (0), 270 (+1,5), 302 (0). IR (Film): 2960s, 2924m, 2880m, 1715s, 1635m, 1605s, 1450m, 1435m, 1382m, 1365m, 1320w, 1270w, 1230s, 1210m, 1190w, 1160s, 1135w, 1090s, 1045m, 1018w, 983m, 950w,

920w, 902w, 865w, 850w, 817w, 800w, 782w, 725w, 704w. ¹H-NMR (CDCl₃, 200 MHz): 0,997 (s, CH₃(16)); 1,217 (s, CH₃(17)); 1,246 (s, CH₃-C(5)); ca. 1,33 (dd, ²J = 13,6, ⁴J = 2, H_{eq}-C(2)); ca. 1,73 (d, ²J = 13,6, H_{ax}-C(2)); 2,012 (d, ⁴J = 1,2, CH₃-C(9)); 2,04 (dd, ²J = 15,7, ⁴J = 2, H_{eq}-C(4)); 2,27 (d, ²J = 15,7, H_{ax}-C(4)); 3,70 (s, CH₃O); ca. 3,90 (m, OCH₂CH₂O); ca. 5,70 (m, H-C(10)); 6,28, 7,69 (AB, J_{AB} = 16, H-C(8), H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 21,03 (g, CH₃-C(5)); 21,36 (g, CH₃-C(9)); 25,85 (g, CH₃-C(1)); 27,43 (g, CH₃-C(1)); 35,08 (s, C(1)); 41,08 (t, C(4)*); 42,23 (t, C(2)*); 51,02 (g, CH₃O); 63,54 (t, CH₂O); 64,06 (g, CH₂O); 64,60 (s, C(5)); 70,51 (s, C(6)); 106,99 (s, C(3)); 117,47 (d, C(10)); 131,14 (d, C(8)*); 131,70 (d, C(7)*); 149,20 (s, C(9)); 166,28 (s, C(11)). MS: 322 (14, M⁺⁻), 307 (2), 291 (2), 263 (3), 251 (3), 236 (39), 221 (74), 204 (16), 193 (11), 189 (13), 177 (24), 161 (22), 147 (15), 133 (27), 119 (29), 86 (60), 55 (18), 43 (100).

22. (+)-(S)-Dehydrovomifoliol (= (1'S,3E)-4-(1'-Hydroxy-2',6',6'-trimethyl-4'-oxo-2'-cyclohexenyl)-3-buten-2-on; 45). Die Lsg. von 266,3 mg (1 mmol) 41 in 5 ml trockenem Aceton wurde mit 19 mg (1 mmol, 0,1 mol-equiv.) TsOH H₂O versetzt. Das Gemisch wurde über Nacht bei RT. gerührt, dann eingedampft, in Et₂O aufgenommen und mit ges. NaHCO3- sowie mit ges. NaCl-Lsg. gewaschen. Trocknen (Na2SO4) und Eindampfen lieferten 211 mg (95%) Rohprodukt. Chromatographie an Kieselgel (Mallinckrodt, 100 mesh) mit Toluol/Et₂O 1:1 bis Toluol/Et₂O 1:1 +1% MeOH und anschliessende Kristallisation aus Et₂O/Hexan lieferten 166,5 mg (75%) kristallines **45**. Schmp. 69–70° ([34]: 68–69°). $[\alpha]_{D}^{21} = +310$ ($c = 1,92 \cdot 10^{-2}$ m, CHCl₃; [34]: $[\alpha]_{D}^{25} = +311$ (CHCl₃); [35]: +159 bis +172; [36]: +266,3). UV (MeOH): 237 (17700). CD (MeOH): 209 (-44,9), 224 (0), 242 (+50,6), 279 (0), 320 (-3,7), 370 (0); [35]: 240 (+27,6), 318 (-1,95); [36]: 209 (-33,3), 243 (+45,5), 320 (-2,2); [37]: 208 (-30,2), 242 (+38,4), 320 (-2,3). IR (CHCl₃): 3608m, 3470 (br.), 3010s, 2970s, 2900w, 2878w, 1670s (br.), 1625w, 1488w, 1435m, 1420m, 1390w, 1375w, 1360s, 1325w, 1302w, 1253s, 1178m, 1125s, 1025m, 992w, 985s, 913m, 878w, 840w. ¹H-NMR (CDCl₃, 200 MHz): 1,082 (s, CH₃-C(1)); 1,111 (s, CH₃-C(1)); 1,89 (d, ${}^{4}J = 1,4, CH_{3}-C(5)$); 2,093 (s, OH); 2,310 (s, Ac); ca. 2,34 (dd, $^{2}J = 17$, $^{4}J = 1,0$, H–C(2)); ca. 2,50 (dd, $^{2}J = 17$, $^{4}J = 0,6$, H–C(2)); ca. 5,96 (br. s, C(4)); 6,47, 6,84 (AB, J_{AB} = 15,7, H-C(7), H-C(8)). ¹³C-NMR (CDCl₃, 50 MHz): 18,72 (q, CH₃-C(5)); 22,79 $(q, CH_1-C(1)); 24, 13 (q, CH_1-C(1)); 27, 88 (q, CH_1-CO); 41, 33 (s, C(1)); 49, 32 (t, C(2)); 78, 80 (s, C(6)); 127, 06 (d, C(1)); 127, 06 (d,$ C(4)); 130,16 (d, C(8)); 145,75 (d, C(7)); 161,74 (s, C(5)); 197,67 (s, C(3)*); 197,97 (s, C(9)*). CI-MS: 223 (100, M^{++} + 1), 205 (20), 177 (3), 165 (2), 124 (6), 95 (4). Anal. ber. für C₁₃H₁₈O₃ (222,29): C 70, 25, H 8, 16; gef.: C 69, 69, H 7,91.

23. (1'S, 2E, 4E)- und (1'S, 2Z, 4E)-5-(1'-Hydroxy-2', 6', 6'-trimethyl-4'-oxo-2'-cyclohexenyl)-3-methyl-2,4pentadiensäure-methylester (**46** bzw. **47**). 23.1. Umsetzung von 322,4 mg **42** in 5 ml Aceton mit 25 mg TsOH·H₂O während 8 h bei RT. ergab 265 mg (95%) **46**. SC an Silicagel mit Et₂O/Hexan 1:1 und Umkristallisation aus Et₂O/Hexan lieferten 210 mg **46**. Schmp. 105–107°. $[\alpha]_{10}^{20}$ = +400° (c = 2,64·10⁻² M, CHCl₃). UV (EtOH): 264,5 (28800). CD (EtOH): 200 (0), 233 (-36,5), 247 (0), 265 (+44,3), 303 (0), 318 (-3), 365 (0); öliger (±)-Methyl-ester, s. [38]. IR (KBr): 3400 (br.), 2990m, 2970m, 2945m, 1715s, 1645s, 1622w, 1610m, 1475w, 1435m, 1395m, 1374m, 1355m, 1324m, 1242s, 1185w, 1166s, 1130m, 1032m, 1010w, 990w, 970m, 914m, 878m, 854w, 840m, 810w, 780w, 665w. ¹H-NMR (CDCl₃, 200 MHz): 1,017 (s, CH₃-C(1)); 1,107 (s, CH₃-C(1)); 1,897 (d, $^4J \approx 1, 2$, CH₃-C(5)); 2,285 (d, $^4J \approx 1, 1$, CH₃-C(9)); a, 2,30 (dd, $^2J = 17$, $^4J \approx 0, 8$, H-C(2)); ca. 2,46 (d, $^2J = 17$, H-C(2)); 3,724 (s, CH₃O); 5,85 (br. s, H-C(10)); 5,94 (br. s, H-C(4)); 6,14, 6,42 (AB, $J_{AB} = 15, 8$, H-C(8), H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 1,398 (q, CH₃-C(9)); 18,92 (q, CH₃-C(5)); 22,93 (q, CH₃-C(1)); 24,17 (q, CH₃-C(1)); 41,49 (s, C(1)); 49,58 (t, C(2)); 51,07 (q, CH₃O); 79,34 (s, C(6)); 120,00 (d, C(10)); 126,88 (d, C(4)); 130,53 (d, C(8)); 134,95 (d, C(7)); 150,75 (s, C(9)); 162,50 (s, C(5)); 167,15 (s, C(11)); 197,83 (s, C(3)). EI-MS: 278 (2, M^+), 260 (3), 222 (9), 190 (100), 162 (25), 134 (33), 125 (10), 91 (14). Anal. ber. für Ct₁₁₁₂₂O₄ (278,35): C 69,04, H 7,97; gef.: C 68,79, H 8,13.

23.2. Analog *Exper. 23.1* wurden aus 322,4 mg **43** 195 mg **47** gewonnen. Schmp. 107–108° ([39]: 109–110°). [α]_D²⁰ = +419,2 (c = 0,910, CHCl₃). UV (EtOH): 262 (21600). CD (EtOH): 200 (0), 232 (-37,6), 245 (0), 264 (+46,8), 304 (0), 324 (-2,3). IR (CHCl₃): 3608*w*–*m*, *ca.* 3450*w* (br.), 3038/3022*w*–*m*, 3008*m*, 2973*m*, 2955*m*, 1709*s*, 1662*vs*, 1636*m*–*s*, 1604*m*–*s*, 1454*m*, 1436*m*–*s*, 1389*w*, 1326*m*, 1322*m*, 1238*vs*, 1191*m*, 1166*vs*, 1126*w*, 1050*m*, 987*w*–*m*, 925*w*, 872*w*–*m*, 853*w*, 842*w*. ¹H-NMR (CHCl₃, 400 MHz): 1,016 (s, CH₃–C(1)); 1,112 (s, CH₃–C(1)); 1,968 (d, ⁴*J* = 1,4, CH₃–C(5)*); 2,010 (d, ⁴*J* = 1,4, CH₃–C(9)*); 2,294, 2,474 (*AB*, *J_{AB}* = 17,2, CH₂(2)); 3,709 (s, CH₃O); 5,756 (d, ⁴*J* = 0,6, H–C(10)); 5,944 (t, H–C(4)); 6,15, 7,88 (*AX*, ²*J* = 15,8, H–C(7), H–C(8)). EI-MS: 278 (2, *M*⁺⁺), 190 (100).

24. (I'S,2'R,2E,4E)-5-(I',2'-Epoxy-2',6',6'-trimethyl-4'-oxocyclohexyl)-3-methyl-2,4-pentadiensäure-methylester (44). Wie in Exper. 8 beschrieben wurden 5,0 g 42 mit Montmorillonit/MgSO₄/H₂O/Toluoł 40:25:2,5:200 hydrolysiert. Die Reaktion wurde nach 2,5 min durch Zugabe von AcOEt gestoppt. Das Rohprodukt (4,23 g, 98%) enthielt ca. 5–6% (GC) 45 und > 92% 44. Wegen Säure- und Basenempfindlichkeit wurde auf eine Chromatographie verzichtet. Spektren des Rohprodukts: IR (CHCl₃): 3025w, 3010m, 2968s, 2930m, 2878w, 1714s, 1639m, 1615s, 1465w, 1437m, 1384m, 1370w, 1358m, 1305w, 1285w, 1265w, 1235s, 1175s, 1105w, 1068w, 1042m, 975m, 930w, 910w, 900w, 875m, 835w. ¹H-NMR (CDCl₃, 400 MHz): 0,995 (s, CH₃--C(1)); 1,117 (s, CH₃--C(1)); 1,175 (s, CH₃--C(5)); 1,932, 2,536 (*AB*, $J_{AB} = 15,5$, CH₂(2)); 2,271 (d, ⁴J = 1,2, CH₃--C(9)); 2,547, 2,815 (*AB*, $J_{AB} = 20$, CH₂(4)); 3,671 (s, CH₃O); 5,803 (m, H-C(10)); 6,280, 6,342 (*AB*, $J_{AB} = 15,6$, H-C(8), H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 13,82 (q, CH₃-C(9)); 19,30 (q, CH₃-C(5)); 24,76 (q, CH₃-C(1)); 26,56 (q, CH₃-C(1)); 35,93 (s, C(1)); 43,58 (t, C(4)*); 50,81 (t, C(2)*); 50,97 (q, CH₃O); 63,25 (s, C(5)); 70,40 (s, C(6)); 119,94 (d, C(10)); 128,12 (d, C(8)); 137,20 (d, C(7)); 150,37 (s, C(9)); 167,14 (s, C(11)); 206,88 (s, C(3)).

25. Diol **38** und (1'S,2'R,4'R,2E,4'E)-5-(1',2'-Epoxy-4'-hydroxy-2',6',6'-trimethylcyclohexyl)-3-methylpenta-2,4-dienol (**39**). Die Lsg. von 8,5 g **44** in 400 ml abs. Et₂O wurde bei -78° mit 140 ml 1M DIBAH in Hexan versetzt. Nach 45 min bei -78° war die Reaktion vollständig abgelaufen. Das überschüssige DIBAH wurde durch Zugabe von *ca*. 50 ml McOH/H₂O 1:1 und Rühren bei -20 bis -10° zersetzt. Das Gemisch wurde weitere 3 h bei RT. gerührt, bis ein farbloser, dicker Schlamm ausfiel. Danach wurde mit *Celite* vermischt, über eine *Celite*-Schicht abgenutscht und der Rückstand mit viel AcOEt nachgewaschen, Eindampfen und Trocknen i. HV. lieferten 7,65 g weisses, klebriges Rohprodukt. Das Verhältnis **38/39** betrug laut HPLC *ca*. 1,6:1,0 (*LiChrosorb Si 60*, 7 μ ; Hexan/Et₂O 1:1 +1% MeOH). Das Rohprodukt wurde durch Lösen in heissem AcOEt und langsames Abkühlen kristallisiert, wobei sich das ölige **39** in der Mutterlauge anreicherte. Die Mutterlauge *ca*. 1,0:4,0 betrug. Nach 2 maliger Umkristallisation aus AcOEt wurde zunächst 2,96 g reines **38** gewonnen. Die vereinigten Mutterlaugen (4,63 g) wurden im HPLC präparativ getrenti (*Zorbax Sil*, 25 × 2,12 cm; Hexan/Et₂O 1:1 +1% MeOH) 0,56 g **38**, gefolgt von 2,27 g **39**. Total 5,79 g (74% bzgl. **42**), davon 3,52 g **38** (45% bzgl. **42**) und 2,27 g **39** (29% bzgl. **42**).

Daten von **38**: Farblose Kristalle aus AcOEt. Schmp. 97,5–98,5°. [α]^D_D = −81,3 (c = 4,17 · 10⁻² M CHCl₃; vgl. *Exper. 18*). UV (EtOH): 236 (27 400). CD (EtOH): 207 (0), 234 (−3,15), 241 (−3,2), 272 (0). IR (KBr): 3455s (br.), 3045w, 2986m, 2970m, 2950m, 2925s, 2875m, 1625w, 1448m, 1420w, 1378m, 1365m, 1346w, 1305w, 1285w, 1228w, 1185w, 1150m, 1132w, 1115w, 1085m, 1065w, 1050s, 1032m, 997s, 973s, 960w, 937w, 910w, 901m, 873w, 845w, 825w, 803w, 763w, 700m. ¹H-NMR (CDCl₃, 200 MHz): 0.968 (s, CH₃(16)); 1,136 (s, CH₃(17)); 1,184 (s, CH₃–C(4)); *ca.* 1,25 (dd, ² $J \approx 13$, ³J = 10,8, H_{ax}–C(2)); *ca.* 1,41 (br. s, OH); *ca.* 1,62 (dd, ²J = 14,2, ³ $J \approx 9$, H_{ax}–C(4)); *ca.* 1,62 (dd, ²J = 13, ³ $J \approx 3,5$, ⁴J = 1,7, H_{eq}–C(2)); 1,806 (d, ⁴J = 0,5, CH₃–C(9)); 2,37 (ddd, ²J = 14,2, ³ $J \approx 6,8$, CH₂(11)); 5,888 (d,23I (d,23I) = 6,8, ³J = 0,5, H–C(10)); 5,880, 6,231 (AB, $J_{AB} = 15,6$, H–C(8), H–C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 12,53 (q, CH₃–C(9)); 19,80 (q, CH₃–C(5)); 24,63 (q, CH₃–C(1)); 29,42 (q, CH₃–C(1)); 35,05 (s, C(1)); 40,66 (t, C(4))); 46,87 (t, C(2)); 58,88 (t, C(11)); 63,72 (d, C(3)); 66,87 (s, C(5)); 70,08 (s, C(6)); 124,08 (d, C(7)); 130,40 (d, C(10)); 137,41 (s, C(9)); 136,50 (d, C(8)); EI-MS: 252 (0,5, M^{++}), 234 (3), 221 (5), 192 (5), 177 (3), 161 (9), 147 (7), 133 (19), 123 (48), 107 (18), 91 (19), 77 (13), 71 (10), 55 (16), 42 (100). Anal. ber. für C₁₅H₂₄O₃ (252,36): C 71,39, H9,58; gef.: C 71,12, H 9,54.

Daten von **39**: Farbloses Öl. [α]₂₀²⁰ = -3 ($c = 3,50 \cdot 10^{-2}$ M, CHCl₃). UV (EtOH): 236 (26 700). CD (EtOH): 206 (-0.5), 240 (-2,1), 266 (0). IR (CHCl₃): 3610m, 3440m (br.), 3008s, 2968s, 2933s, 2878m, 1627w, 1472w, 1464w, 1451m, 1383s, 1367m, 1235m, 1175w, 1150w, 1125m, 1112w, 1076m, 1035s, 977s, 955w, 936w, 910s, 892w. ¹H-NMR (CDCl₃, 200 MHz): 1,000 (s, CH₃(16)); 1,146 (s, CH₃(17)); 1,183 (s, CH₃-C(5)); 1,35 (ddd, ²J = 12,7, ³J = 4,0, ⁴J = 1,5, H_{eq}-C(2)); 1,59 (dd, ²J = 12,7, ³J = 10,8, H_{ax}-C(2)); 1,802 (d, ⁴J = 0,5, CH₃-C(9)); 1,88 (dd, ²J = 14,8, ³J = 6,7, ⁴J = 1,2, H_{eq}-C(4)); 3,88 (m, H-C(3)); 4,29 (d, ³J = 6,8, CH₂(11)); 5,69 (t, ³J = 6,8, H-C(10)); 5,819, 6,238 (AB, $J_{AB} = 15,7$, H-C(8), H-C(7)). ¹³C-NMR (CDCl₃, 50 MHz): 12,60 (q, CH₃-C(9)); 21,18 (q, CH₃-C(5)); 25,86 (q, CH₃-C(1)); 26,73 (q, CH₃-C(1)); 34,94 (s, C(1)); 39,13 (t, C(4)); 43,65 (t, C(2)); 59,19 (t, C(11)); 6,82 (d, C(3)); 65,07 (s, C(5)); 71,01 (s, C(6)); 123,00 (d, C(7)), 147 (6), 133 (16), 123 (60), 109 (21), 91 (20), 84 (29), 67 (14), 55 (22), 42 (100).

26. (1'S,2' R,4' S,2E,4E)- und (1'S,2' R,4' R,2E,4E)-5-(1',2'-Epoxy-4'-hydroxy-2',6',6'-trimethylcyclohexyl)-3-methyl-2,4-pentadienal (49 bzw. 50)⁷). 26.1. Die Lsg. von 3,03 g 38 in 200 ml AcOEt wurde mit 31 g MnO₂ ('basisch') 2,5 h bei RT. gerührt. Nach Filtration über *Celite* wurde eingedampft und der Rückstand aus Et₂O/Hexan kristallisiert. Ausbeute 91 % 49. Doppelschmp. 83,5° und 96,5–97,5°. [α]₂₀²⁰ = -105,8 (c = 2,67 · 10⁻² M, CHCl₃). UV (EtOH): 282 (30 600). CD (EtOH): 200 (-0,9), 204 (-3,0), 224 (-0,1), 283 (-3,7), 316 (0), 356 (+0,4), 398 (0). IR (CH₂Cl₂): 3605m, 3050w, 2965m, 2930m, 2870w, 2850w, 2778w, 1712w, 1664vs, 1632m, 1600w, 1582w, 1472w,

⁷) Synthese des (1'S,2'R,4'S,2Z,4E)-Isomeren und weitere Literaturangaben, s. [8].

1450w, 1382m, 1366w, 1335w, 1207m, 1183w, 1140w, 1110m-s, 1047m, 1030w, 980m, 960w, 937w, 913w, 870w, 852w. ¹H-NMR (CDCl₃ 200 MHz): 0,982 (s, CH₃(16)); 1,185 (s, CH₃-C(5)*); 1,193 (s, CH₃(17)*); 1,27 (dd, ²J = 13, ³J = 10,2, H_{ax}-C(2)); 1,63 (m, H_{eq}-C(2)); 1,65 (dd, ²J \approx 14,5, ³J \approx 9, H_{ax}-C(4)); 2,281 (d, ⁴J = 1,1, CH₃-C(9)); 2,40 (ddd, ²J = 14,5, ³J = 5, ⁴J = 1,8, H_{eq}-C(4)); 3,91 (m, H-C(3)); ca. 5,98 (d, ³J = 8, H-C(10)); 6,38, 6,49 (AB, J_{AB} = 15,6, H-C(8), H-C(7)); 10,12 (d, ³J = 8, H-C(11)). ¹³C-NMR (CDCl₃, 50 MHz): 13,18 (q, CH₃-C(9)); 19,83 (q, CH₃-C(5)); 24,88 (q, CH₃-C(1)); 29,33 (q, CH₃-C(1)); 35,16 (s, C(1)); 40,61 (t, C(4)); 46,68 (t, C(2)); 63,71 (d, C(3)); 67,17 (s, C(5)); 69,92 (s, C(6)); 129,65 (d, C(10)); 133,62 (d, C(8)); 135,74 (d, C(7)); 153,01 (s, C(9)); 191,41 (d, C(11)). CI-MS: 251 (100, M⁺⁺ + 1), 233 (92), 215 (5), 207 (6), 195 (4), 167 (4), 155 (5), 137 (8), 121 (6), 109 (4). Anal. ber. für C₁₅H₂₂O₃ (250,34): C 71,97, H 8,86; gef.: C 71,69, H 9,09.

Das in Exper. 18 hergestellte 38 gab bei der Oxydation 49 mit identischen chiroptischen Daten.

26.2. Analog *Exper.* 26.1 wurden aus 2,3 g **39** mit 23 g MnO₂ ('basisch') 2,2 g (96%) **50** gewonnen⁸). Schmp. 109–110,5° (aus CH₂Cl₂/Hexan). [α]₁₀²⁰ = -22,2 (c = 2,52 · 10⁻² M CHCl₃). UV (EtOH): 282 (28 700). CD (EtOH): 200 (-0,8), 205 (-2,5), 228 (0), 231 (+0,2), 235 (0), 283 (-2,8), 317 (0), 340 (+0,4), 400 (0). IR (CH₂Cl₂): 3600*m*, 3055*w*, 3000*w*, 2970*s*, 2935*s*, 2875*m*, 2780*w*, 2730*w*, 1733*w*, 1665*s*, 1633*s*, 1600*m*, 1583*w*, 1472*w*, 1450*m*, 1405*w*, 1385*s*, 1368*m*, 1335*w*, 1208*s*, 1175*w*, 1108*vs*, 1075*w*, 1036*s*, 978*s*, 955*w*, 938*w*, 910*w*, 876*m*, 853*w*, 840*w*, 805*w*, 785*w*. ¹H-NMR (CDCl₃, 200 MHz): 1,010 (*s*, CH₃(16)); 1,191 (*s*, CH₃(17)*); 1,196 (*s*, CH₃-C(5)*); *ca*. 1,39 (*dd*, ²*J* ≈ 12,5, ³*J* = 4, ⁴*J* ≈ 1, H_{eq}-C(2)); *ca*. 1,60 (*dd*, ²*J* ≈ 12,5, ³*J* ≈ 11, H_{ax}-C(2)); *ca*. 1,91 (*dd*, ²*J* = 15, ³*J* ≈ 9, H_{ax}-C(4)); *ca*. 2,23 (*ddd*, ²*J* ≈ 1, ³*J* ≈ 1, H_{eq}-C(4)); 2,279 (*d*, *J* = 1, 1, CH₃-C(9)); 3,91 (*m*, H-C(3)); 5,98 (*dd*, ³*J* = 8, ⁴*J* = 1, 1, H-C(10)); 6,41 (*s*, H-C(7), H-C(8)); 10,13 (*d*, ³*J* = 8, H-C(11)). ¹³C-NMR (CDCl₃, 50 MHz): 13,17 (*q*, CH₃-C(9)); 21,04 (*q*, CH₃-C(5)); 25,55 (*q*, CH₃-C(1)); 26,79 (*q*, CI₃-C(1)); 34,97 (*s*, C(1)); 38,98 (*t*, C(4)); 43,45 (*t*, C(2)); 63,46 (*d*, C(3)); 65,45 (*s*, C(5)); 70,92 (*s*, C(6)); 129,77 (*d*, C(10)); 132,20 (*d*, C(8)); 136,54 (*d*, C(7)); 152,74 (*s*, C(9)); 191,36 (*d*, C(11)). CI-MS: 251 (70, *M*⁺⁺ + 1), 233 (100), 215 (10), 184 (4), 121 (3), 109 (5), 95 (6), 89 (97). Anal. ber. für C₁₅H₂₂O₃ (250,34): C 71,97, H 8,86; gef.: C 71,73, H 8,69.

27. (3S,3'S,all-E)-Violaxanthin (1) und seine (9Z)- und (13Z)-Isomeren 53 bzw. 54. Zu einer auf -50° gekühlten Lsg. von 3,65 g 51 [14] in 20 ml MeOH wurde tropfenweise und alternierend unter Rühren eine Lsg. von 2,529 g 49 in 10 ml MeOH bzw. eine solche von 22 ml 0,5M NaOMe in MeOH gegeben. Nach 30 min bei -50° wurde das Kühlbad entfernt und die Temp. innert 2 h auf -10° steigen gelassen. Hierauf wurde 12 h bei RT. und unter Lichtausschluss gerührt. Nach Aufnehmen in Et₂O, Auswaschen mit H₂O und Trocknen wurde an 150 g Silicagel (*Merck KG 60*, 230–400 mesh) mit Hexan/Aceton 3:1 bis 3:2 +0,1% (i-Pr)₂EtN chromatographicrt, um Ph₃PO zu entfernen. Nach Eindampfen und Kristallisation aus Et₂O/Hexan wurden 1,03 g (38%) 'Violaxanthin' erhalten, von Erwärmung und Lichtzutritt) lieferte reines 1. Die reinen Isomeren 53 und 54 wurden durch präp. HPLC an Spherisorb S-5. CN, 250 × 22,5 mm mit Hexan/(i-Pr)₂EtN 1000:1 und CH₂Cl₂/MeOH 98,5:1,5 im Verhältnis 3:2 hergestellt.

Daten von 1: Schmp. 198-199°. Betr. ¹H-NMR und ¹³C-NMR, s. auch [40–43]. UV/VIS (EPA): 265,5 (37 500), 414,5 (102600), 437 (152500), 467 (150000). CD (EPA, RT.): 212,5 (-6,2), 217,8 (0), 230 (+9,8), 240 (0), 264,5 (-27,9), 292 (0), 325 (5,0), 347 (0), mehrere schwache, positive Banden bis 480. CD (EPA, 93 K): 216 (0), 229 (+21,5), 242 (0), 267 (-44,8), 286 (0), 332 (+8,7), 347 (0), mehrere schwache, positive Banden bis *ca*. 500. ¹H-NMR (CDCl₃, 400 MHz)⁹): 0,983 (*s*, CH₃(16, 16')); 1,155 (*s*, CH₃(17, 17')); 1,193 (*s*, CH₃(18, 18')); 1,249 (*dd*, ²*J* = 12,5, ³*J* = 11, H_{ax}-C(2,2')); 1,631 (*dd*, ²*J* = 14,5, ³*J* = 8, H_{ax}-C(4,4')); 1,632 (*ddd*, ²*J* = 12,5, ³*J* = 3,5, ⁴*J* = 18, H_{eq}-C(2,2')); 1,932 (*s*, CH₃(19, 19')); 1,968 (*s*, CH₃(20,20')); 2,390 (*ddd*, ²*J* = 14,3, ³*J* = 5,0, ⁴*J* = 18, H_{eq}-C(4,4')); 3,920 (*m*, H-C(3,3')); 5,884 (*d*, ³*J* = 15,5, H-C(7,7')); 6,200 (*d*, ³*J* = 11, H-C(10,10')); 6,270 (*m*, H-C(11,11')); 6,636 (*m*, H-C(15,15')). CI-MS: 601 (57, *M*⁺ + 1), 583 (36, *M*⁺⁺ + 1 - H₂O), 565 (22, *M*⁺⁻ - 2H₂O), 510 (35), 509 (*M*⁺⁺ + 1 - Toluol), 491 (30), 232 (15), 211 (27, Oxepinium), 181 (100, Furylium), 165 (21), 121 (20).

Daten von **53**: Ockerfarbene Kristalle aus Et₂O/Hexan. Schmp. 108". UV/VIS (EPA): 266 (20 200), 410 (72 700), 432 (103 700), 461 (95 300). CD (EPA, RT.): 217 (0), 231 (-34,0), 248 (0), 267 (15,0), 285 (0), 314 (-7,1), 319 (-5,3), 326 (-9,2), 339 (0), 344 (0), 410 (4,3), 435 (5,2), 461 (4,5), 511 (0). ¹H-NMR (CDCl₃, 400 MHz): 0,983 (s, CH₃(16')); 1,011 (s, CH₃(16)); 1,153 (s, CH₃(17')); 1,168 (s, CH₃(17)); 1,192 (s, CH₃(18')); 1,216 (s, CH₃(18)); 1,23-1,30 (m, H_{ax}-C(2,2')); 1,60-1,67 (m, H_{eq}-C(2,2')); 1,630 (dd, ²J = 14, ³J = 9, H_{ax}-C(4')); 1,930 (s, CH₃(19)); 1,935 (s, CH₃(19')); 1,965 (s, CH₃(20,20')); 2,390 (ddd, ²J = 14, ³J \approx 5,5,

⁸) Synthese des (2Z)-Isomeren von *ent*-50 s. [8].

⁹) Vgl. ¹³NMR-Daten in [40] (Lsgm.?), [43] ((D₅)Pyridin), und [41] (CDCl₃).

 ${}^{4}J \approx 1.5$, H_{eq} -C(4')); 2,41 (ddd, ${}^{2}J = 14$, ${}^{3}J \approx 5.5$, ${}^{4}J \approx 1.5$, H_{eq} -C(4)); 3,920 (m, H-C(3,3')); 5,881 (d, ${}^{3}J = 15.5$, H-C(7')); 5,939 (d, ${}^{3}J = 15.5$, H-C(7)); 6,078 (d, ${}^{3}J = 11$, H-C(10)); 6,202 (d, ${}^{3}J = 11$, H-C(10')); ca. 6,240 (d, ${}^{3}J \approx 12$, H-C(14)); ca. 6,270 (d, ${}^{3}J \approx 12$, H-C(14')); 6,296 (d, ${}^{3}J = 15$, H-C(8)); 6,297 (d, ${}^{3}J = 15.5$, H-C(8')); 6,376 (d, ${}^{3}J = 15$, H-C(12')); 6,603 (dd, ${}^{3}J = 15$, ${}^{3}J = 11.5$, H-C(11')); 6,629 (m, H-C(15,15')); 6,766 (dd, ${}^{3}J = 15, 11$, H-C(11)); 6,841 (d, ${}^{3}J = 15.5$, H-C(8)). ${}^{13}C$ -NMR ((D₅)Pyridin): s. [43]. ¹H-NMR und CD (EtOH): s. [25].

Daten von **54**: Ockerfarbene Kristalle aus Et₂O/Hexan. Schmp. 113–117°. UV/VIS (EPA): 267,5 (18 500), 314 (36900), 327 (52 600), 408 (67900), 431 (98 200), 460 (85900). CD (EPA, RT.): 218 (0), 232 (-30,4), 246 (0), 268 (+23,61), 283 (0), 315 (-26,1), 320 (-20,6), 328 (-36), 343 (0), 410 (+10,8), 417 (+7,4), 436 (+13,0), 449 (+6,9), 461 (+11,0), 511 (0). ¹H-NMR (CDCl₃, 400 MHz): 0,987 (s, CH₃(16')); 0,993 (s, CH₃(16)); 1,156 (s, CH₃(17')); 1,161 (s, CH₃(17)); 1,195 (s, CH₃(18')); 1,201 (s, CH₃(18)); 1,595–1,680 (m, H_{ax}-C(2,2'), H_{ax}-C(4,4')); 1,931 (s, CH₃(19')); 1,959 (s, CH₃(19')); 1,958 (s, CH₃(20')); 2,35–2,43 (m, H_{eq}-C(4,4')); 3,920 (m, H-C(3,3')); 5,880 (d, ³J = 15,5, H-C(7')); 5,910 (d, ³J = 15,5, H-C(7)); 6,120 (d, ³J = 12, H-C(14)); 6,205 (d, ³J = 11, H-C(10')); 6,249 (d, ³J = 11, H-C(10)); 6,266 (d, ³J = 12, H-C(14')); 6,301 (d, ³J = 15,5, H-C(8')); 6,317 (d, ³J = 15,5, H-C(8)); 6,382 (d, ³J = 15, H-C(12')); 6,560 (dd, ³J = 14, 12, H-C(15')); 6,602 (dd, ³J = 15, 11, H-C(11')); 6,610 (dd, ³J = 15, 11, H-C(11')); 6,805 (dd, ³J = 14, 12, H-C(15')); 6,899 (d, ³J = 15, H-C(12)). ¹³C-NMR ((D₅)Pridin): s. [43].

28. (3 R, 3' R, all- E)-Violaxanthin (55) und seine (9Z)- und (13Z)-Isomeren 57 und 58. Aus 1,439 g 50 und 2,1 g 51 wurden wie in *Exper. 27* beschrieben 1,4 g Carotinoid-Gemisch erhalten. Acetylierung (Pyridin/Ac₂O) ergab 410 mg 56. Die Mutterlaugen wurden verseift. Durch direkte Kristallisation aus Et₂O/Hexan wurden 105 mg 55 erhalten. Die verbleibenden Mutterlaugen wurden wie in *Exper. 27* beschrieben durch präp. HPLC getrennt.

Daten von **55**: Ockerfarbene Kristalle. Schmp. 171-172°. UV/VIS (EPA): 266 (37600), 414 (104700), 438 (145000), 467 (140000). CD (EPA, RT.): 218 (0), 229 (+10,4), 240 (0), 265 (-25,4), 293 (0), 316 (+3,5), 326 (5,4), 343 (0), 412 (+1,9), 436 (+3,5), 470 (0). CD (EPA, 93 K): 216 (0), 230 (+20,3), 242 (0), 268 (-38,5), 286 (0), 308 (+2,9), 318 (+5,4), 334 (+9,3), 344 (+1,1), 424 (+3,9), 448 (+4,8), 483 (+4,3), 492 (0). ¹H-NMR (CDCl₃, 400 MHz): 1,017 (s, CH₃(16,16')); 1,161 (s, CH₃(17,17')); 1,194 (s, CH₃(18,18')); 1,360 (*ddd*, ³J = 12,5, ³J = 4, ⁴J \approx 1, H_{eq}-C(2,2'); 1,615 (*dd*, ³J = 12,5, 11, H_{ax}-C(2,2')); 1,895 (*dd*, ²J = 15, ³J = 8,5, H_{ax}-C(4,4')); 1,931 (s, CH₃(19,19')); 1,969 (s, CH₃(20,20')); 2,205 (*ddd*, ²J = 15, ³J = 6,5, ⁴J \approx 1, H_{eq}-C(14,14')); 6,303 (*d*, ³J = 15,5, H-C(7,7')); 6,603 (*d*, ³J = 15, 11,5, H-C(11,11')); 6,639 (*m*, H-C(15,15')). CI-MS: 601 (7, *M*⁺⁺ 1), 583 (*M*⁺⁺¹ - H₂O), 565 (*M*⁺⁺¹ - 2 H₂O), 509 (*M*⁺⁺ + 1 - Toluol, 13), 491 (7), 235 (14), 221 (38), 209 (29), 181 (100).

Daten von **56**: Glänzende fuchsig-rote Plättchen (aus Aceton/Hexan und Et₂O/Hexan). Schmp. 215–216°. UV/VIS (EPA): 267 (41 900), 414,5 (104 200), 438 (156 000), 468 (152 600). CD (EPA, RT.): 218 (0), 229 (+15,4), 238,5 (0), 264,5 (-38,8), 291 (0), 325,5 (+8,6), *ca*. 345 (0), zahlreiche schwache, positive Banden bis 490. ¹H-NMR (CDCl₃, 400 MHz): 0,993 (*s*, CH₃(16,16')); 1,176 (*s*, CH₃(17,17')); 1,214 (*s*, CH₃(18,18')); 1,354 (*ddd*, ²J \approx 12,5, ³J \approx 4, ⁴J \approx 1,5, H_{eq}-C(2,2')); 1,683 (*dd*, ²J \approx ³J \approx 12,5, H_{ax}-C(2,2')); 1,876 (*dd*, ²J \approx 14,5, ³J \approx 9,5, H_{ax}-C(4,4')); 1,931 (*s*, CH₃(19,19')); 1,968 (*s*, CH₃(20,20')); 2,022 (*s*, 2 Ac); 2,327 (*ddd*, ²J \approx 14,5, ³J \approx 7,5, ⁴J \approx 1,5, H_{eq}-C(4,4')); 4,919 (*m*, H-C(3,3')); 5,809 (*d*, ³J = 15,5, H-C(7,7')); 6,198 (*d*, ³J \approx 11,5, H-C(10,10')); 6,270 (*m*, H-C(14,14')); 6,295 (*d*, ³J = 15,5, H-C(8,8')); 6,377 (*d*, ³J = 15, H-C(12,12')); 6,607 (*dd*, ³J = 15, 11,5, H-C(11,11')); 6,631 (*m*, H-C(15,15')). EI-MS: 684 (12, *M*⁺). Anal. ber. für C₄₄H₆₀O₆ (684,97): C 77,16, H 8,83; gef.: C 77,40, H 9,04.

Daten von **57**: Amorph. UV/VIS (EPA, qual.): 266,5 (0,264), 410,5 (1,179), 432,5 (1,653), 461,5 (1,525). CD (EPA, RT.): 214 (0), 229 (-42), 246 (0), 266 (+20), 283 (0), 303 (-6), 313 (-11), 326 (-13), 340 (0), mehrere schwache, positive Banden bis 480. ¹H-NMR (CDCl₃, 400 MHz): 1,017 (*s*, CH₃(16')); 1,038 (*s*, CH₃(16)); 1,160 (*s*, CH₃(17')); 1,178 (*s*, CH₃(17)); 1,194 (*s*, CH₃(18')); 1,217 (*s*, CH₃(18)); 1,32–1,42 (*m*, H_{eq}-C(2,2')); 1,54–1,67 (*m*, H_{ax}-C(2,2')); 1,895 (*dd*, ²J = 15, ³J \approx 8,5, H_{ax}-C(4')); 1,907 (*dd*, ²J \approx 15, ³J \approx 8,5, H_{ax}-C(4)); 1,929 (*s*, CH₃(19')); 1,934 (*s*, CH₃(19)); 1,965 (*s*, CH₃(20')); 1,972 (*s*, CH₃(20)); *ca*. 2,207 (*dd*, ²J \approx 15, ³J \approx 9, H_{eq}-C(4')); *ca*. 2,225 (*dd*, ²J \approx 15, ³J \approx 9, H_{eq}-C(4)); 3,890 (*m*, H-C(3,3')); 5,822 (*d*, ³J \approx 15, H-C(7')); 5,878 (*d*, ³J = 15,5, H-C(7)); 6,083 (*d*, ³J \approx 11,5, H-C(10)); 6,205 (*d*, ³J \approx 11,5, H-C(10')); 6,380 (*d*, ³J = 15, H-C(12')); 6,300 (*dd*, ³J = 15, H-C(11')); 6,380 (*m*, H-C(15,15')); 6,758 (*dd*, ³J = 15, 11,5, H-C(11)); 6,849 (*d*, ³J = 15,5, H-C(8)).

Daten von **58**: Amorph. ¹H-NMR (CDCl₃, 400 MHz): 1,018 (s, CH₃(16')); 1,024 (s, CH₃(16)); 1,161 (s, CH₃(17')); 1,166 (s, CH₃(17)); 1,196 (s, CH₃(18')); 1,201 (s, CH₃(18)); 1,33–1,40 (m, H_{eq}-C(2,2')); 1,57–1,67 (m, H_{ax}-C(2,2')); 1,894 (dd, ²J = 15, ³J = 8,5, H_{ax}-C(4')); 1,898 (dd, ²J = 15, ³J = 8,5, H_{ax}-C(4)); 1,929 (s, CH₃(18')); 1,210 (s, CH₃(18'));

29. HPLC-Trennung von (3S,3'S,all-E)- und (3R,3'R,all-E)-Violaxanthin (1 bzw. 55). Trennung an Spherisorb-CN (4,6 × 250 mm) mit A/B 62:38 (A = Hexan + 0,1% (i-Pr)₂EtN, B = CH₂Cl₂ + 2% MeOH, Fluss 1,5 ml/min). Retentionszeit von 1 11,3, von 55 11,8 min. Vergleich der Retentionszeiten der Violaxanthin-Isomeren (Bedingungen wie oben): 1 11,3, 53 16,0, 54 20,8 und 60 21,0 min.

30. 15,15'-Didehydroviolaxanthin (59). Frisch aus 1,26 g **38** hergestellter C_{15} -Aldehyd **49** in 10 ml THF wurde zur Lsg. von 1,2 g **52** [21] in 90 ml THF/1,3-Dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidon (DMPU) 2:1 getropft, welches mit 3,7 ml 1,6N BuLi in Hexan 30 min bei -78° deprotoniert worden war. Nach 15 min entfernte man das Kühlbad und liess auf RT. kommen. Nach 2 h wurde auf halbkonz. NaCl-Lsg. gegossen und mit Et₂O extrahiert. Nach SC an Silicagel mit Et₂O/MeOH 9:1 +0,1% (i-Pr)₂EtN wurde die Carotinoid-Zone aufgefangen und eingedampft: 1,2 g (80%) Kristalle. Nach Zmaliger Umkristallsation aus Et₂O/Hexan wurden 1,02 g (70%) **59** in leuchtend-orangen Kristallen erhalten. Schmp. 138–144°. UV/VIS (Et₂O): 267 (30100), 323 (20800), 400 (sh, 79800), 418 (102900), 444 (95500). CD (Et₂O, RT.): 227 (-10,8), 247 (-4,5), 267 (-10,5), 282 (0), 313 (+11,6), 318 (+10,5), 325 (+14,1), 343 (0), 420 (-3,4), 449 (-2,7), 467 (0). IR (CHCl₃): 3615*m*, 3425*m*-s, 3045*w*, 30048, 2965*s*, 2930*s*, 2875*m*, 2150*vw*, ca. 1692–1650*m*-s. ¹H-NMR (CDCl₃, 400 MHz): 0,982 (*s*, CH₃(16,16')); 1,156 (*s*, CH₃(17,17')); 1,191 (CH₃(18,18')); 1,250 (*dd*, $^{2}J \approx 12,5, ^{3}J \approx 10,5, H_{ax}-C(2,2')); 1,27 ($ *d* $, <math>^{3}J = 4,5,2$ OH); 1,632 (*dd*, überlagert von *ddd*, H_{eq}-C(2,2'), H_{ax}-C(4,4')); 1,942 (*s*, CH₃(19,19')); 2,104 (*s*, CH₃(20,20')); 2,390 (*ddd*, $^{2}J \approx 12,5, ^{3}J \approx 10,5, H_{ax}-C(14,14')); 5,926 ($ *AB* $, <math>J_{AB} = 15,5, H-C(17,7')); 6,176 ($ *AB* $, <math>J_{AB} = 11, H-C(10,10')); 6,298 ($ *AB* $, <math>J_{AB} = 15,5, H-C(8,8')); 6,376 ($ *AB* $, <math>J_{AB} = 15, H-C(12,12')); 6,67 ($ *dd* $, <math>^{3}J = 5, 11, H-C(11,11')).$

31. (15Z)-Violaxanthin (60). Bei RT. und Rotlicht wurden 2,6 g Lindlar-Katalysator in 300 ml AcOEt und 2 ml Chinolin/AcOEt 9:1 im offenen Gefäss durch Durchleiten von H₂ während 15 min vorhydriert. Dann wurden 0,85 g **59** in 130 ml AcOEt auf einmal zugegeben und unter Durchleiten eines schwachen H₂-Stromes reduziert. Nach 30 min hatte der *cis*-Pik bei 327 nm sein Maximum erreicht. Nach Filtration und Eindampfen wurde der Rückstand aus CH₂Cl₂/Hexan ohne Erwärmung umkristallisiert; *1. Fr.* 430 mg, *2. Fr.* 210 mg (total 75%). Ockerfarbene Kristalle, Schmp. 121,6–122,7°. UV/VIS (Et₂O): 267 (18100), 313 (46000), 326 (66300), 411 (66900), 434 (94600), 463 (82400). CD (Et₂O, RT.): 216 (0), 232 (-28.3), 249 (0), 269 (+24,7), 284 (0), 315 (-31.2), 328 (-43.8), 355 (0), 413 (+9.9), 440 (+14.0), 468 (+11.8), 493 (0). ¹H-NMR (CDCl₃, 400 MHz): 0,993 (s, CH₃(16, 16')); 1,160 (s, CH₃(17, 17')); 1,201 (s, CH₃(18, 18')); 1,25 (*dd*, ²J = 12,8, ³J = 10,4, H_{ax}-C(2,2')); 1,637 (*dd*, überlagert von *ddd*, H_{ax}-C(4,4'), H_{eq}-C(2,2')); 1,939 (s, CH₃(19, 19')); 1,968 (s, CH₃(20,20')); 2,397 (*ddd*, ²J = 14,2, ³J = 50, ⁴J = 1,6, H_{eq}-C(4,4')); *ca*. 3,9 (*m*, H-C(3,3')); 5,895 (*AB*, *J_{AB}* = 15,5, H-C(7,7')); 6,211 (*AB*, *J_{AB}* = 11, H-C(11, 11')); 6,310 (*AB*, *J_{AB}* = 15,5, H-C(8.8')); 6,40 (*dd*, H-C(15, 15')); 6,449 (*AB*, *J_{AB}* = 15,0, H-C(12, 12')); 6,643 (*dd*, ³J = 14,8, 11,3, H-C(11, 11')); *ca*. 6,79 (*d* (überlagert mit *dd* von H-C(11, 11')), H-C(14, 14')). ¹³C-NMR ((D₅)Pyridin): s. [42].

32. (3S, 3'S, all-E)-Violaxanthin (1) aus 60. Die Lsg. von 610 mg 60 in Heptan, das 0,1% (i-Pr)₂EtN enthielt, wurde unter Ar und bei Rotlicht im Ölbad langsam zum Sdp. erwärmt und 1½ h unter Rückfluss gehalten. Nach dem Abkühlen und Rühren bei 0° wurde vom abgeschiedenen Isomerisationsprodukt abfiltriert: 580 mg (95%) bräunliche ockergelbe Kristalle, nach HPLC (s. *Exper. 29*) bestehend aus 80% 1 und *ca.* 20% 53/54. Bei Umkristallisation aus CS₂/MeOH stieg der Gehalt an 1 auf > 95%. Eigenschaften analog zu 1 aus *Exper. 27*.

33. Violadion (= $(5 \text{ R}, 6S, 5' \text{ R}, 6' \text{ S}, all \cdot \text{E}) - 5, 6: 5', 6' - Diepoxy - 5, 6, 5', 6' - tetrahydro-\beta, \beta-carotin-3, 3'-dion;$ **61**). Eine Lsg. von 12 mg 1 in 1,5 ml DMSO wurde bei 0° mit 12 Tropfen Ac₂O versetzt. Nach Stehenlassen bei RT. und unter Schutzgas und Lichtausschluss wurde mit Et₂O verdünnt, darauf mit H₂O sorgfältig ausgewaschen, eingedampft und der Rückstand aus Et₂O/CH₂Cl₂/Hexan umkristallisiert: 7,2 mg (60%) hellrotbraune Kristalle. Schmp. 176–177°. Umkristallisation aus MeOH gab Kristalle mit Schmp. 187–189°. UV/VIS (EPA): 265,5 (38600), 414,5 (98900), 437 (142500), 467 (135300). CD (EPA, RT.): 220 (0), 229 (+9,4), 239 (0), 265 (-22,9), 279 (0), 313 (+5,5), 327 (+6,6), 345 (0), 418 (+3,8), 437 (+4,9), 469 (+4,2), 495 (0). IR (CH₂Cl₂): 3060w-m, 3038m, 2962s, 2922m, 2870w-m, 1712vs, 1660m, 1382m, 972vs, 895w, 785w. ¹H-NMR (CDCl₃, 400 MHz): 1,061 (s, CH₃(16, 16')*); 1,148 (s, CH₃(17, 17')*); 1,239 (s, CH₃(18, 18')); ca. 1,95, 2,614 (AB, ³J_{AB} = 15, CH₂(2, 2')); 1,965 (s, CH₃(19, 19')); 1,980 (s, CH₃(20, 20')); 2,58, 2,87 (AB, J_{AB} = 20, CH₂(4, 4')); 5,884 (AB, ³J = 15,5, H-C(7, 7')); 6,25 (AB, ³J ≈ 11,5, H-C(10, 10')); 6,28 (dd, J = ?, H-C(14, 14')); ca. 6,40 (2d, H-C(8, 8'), H-C(12, 12')); ca. 6,62 (m, H-C(11, 11'), H-C(15, 15')). EI-MS: 596 (11, M⁺).

Violadion ist sehr empfindlich. Bei der HPLC auf *Spherisorb-CN* wurden immer mehrere Produkte beobachtet. Bei DC auf Silicagel verschmierte sich die Substanz über den ganzen Elutionsweg, auch wenn (i-Pr)₂EtN zugesetzt wurde.

34. Violadiendion (= (6S,6'S,allE)-6,6'-Dihydroxy-e,e-carotin-3,3'-dion; **62**). Die Lsg. von 7 mg **61** in 2 ml MeOH wurde mit 0,5 ml 0,5 M NaOCH₃-Lsg. in MeOH versetzt und unter Schutzgas 30 min reagieren gelassen. Darauf wurde mit Et₂O verdünnt, mit H₂O ausgewaschen und eingedampft. Der Rückstand wurde aus Et₂O/He-xan kristallisiert: 8 mg (86%) rötlichbraune Kristalle, Schmp. 192–193°. UV/VIS (EPA): 264 (33900), 415,5 (100500), 438,5 (148000), 468 (141600). CD (EPA, RT.): 222 (-8,1), 236 (0), 263 (+10,0), 343 (+0,2), 413 (+2,4), 438 (+2,7), 469 (+2,2), 496 (0). IR (CH₂Cl₂): 3600w, ca. 3400w (schr br.), 3040w, 2970m, 2922m, 2850w, 1725w, 1665vs, 1624w, 1435w, 1415w, 1372w, 1175w, 1120w, 970m-s. NMR (CDCl₃, 400 MHz): 1,030 (s, CH₃(1,1')); 1,112 (s, CH₃(1,1')); 1,746 (s, OH); 1,917 (d, ⁴J = 1,2, CH₃(18,18')); 1,928 (s, CH₃(19,19')); 1,974 (s, CH₃(20,20')); 2,249, 2,482 (*AB*, *J_{AB}* = 17, CH₂(2,2')); 5,733 (*AB*, *J_{AB}* = 15,8, H–C(7,7')); 5,931 (m, H–C(4,4')); 6,233 (d, ³J ≈ 11, H–C(10,10')); ca. 6,6 (komplexe Signalgruppe, H–C(11, 11'), H–C(15, 15')). EI-MS: 596 (52, *M*⁺).

LITERATURVERZEICHNIS

- H. Y. Yamamoto, 'Biochemistry of the Violaxanthin Cycle in Higher Plants', *Pure Appl. Chem.* 1979, 51, 639;
 A. Hager, 'The Reversible, Light-Induced Conversions of Xanthophylls in the Chloroplast', in 'Pigments in Plants', Ed. F.-C. Czygan, G. Fischer, Stuttgart, 1980.
- [2] R. Kuhn, A. Winterstein, Ber. Dtsch. Chem. Ges. 1931, 64, 326.
- [3] P. Karrer, E. Jucker, Helv. Chim. Acta 1945, 28, 300.
- [4] L. Bartlett, W. Klyne, W. P. Mose, P. M. Scopes, G. Galasko, A. K. Mallams, B. C. L. Weedon, J. Szabolcs, G. Tóth, J. Chem. Soc. (C) 1969, 2527.
- [5] a) T.W. Goodwin, 'The Biochemistry of the Carotenoids', Chapman and Hall, London, 1980, Vol. 1; J. Gross, 'Pigments in Fruits', Academic Press, London, 1987; b) T.W. Goodwin, 'The Biochemistry of the Carotenoids', Chapman and Hall, London, 1984, Vol. 2.
- [6] O. Isler, H. Gutmann, U. Solms, 'Carotenoids', Birkhäuser, Basel, 1971.
- [7] O. Straub, H. Pfander, 'Key to Carotenoids', Birkhäuser, Basel, 1987.
- [8] F. Kienzle, H. Mayer, R. E. Minder, H. Thommen, Helv. Chim. Acta 1978, 61, 2616.
- [9] K. Mori, Tetrahedron 1974, 30, 1065.
- [10] R. Buchecker, U. Marti, C. H. Eugster, Helv. Chim. Acta 1984, 67, 2043.
- [11] H. Cadosch, C. H. Eugster, Helv. Chim. Acta 1974, 57, 1466.
- [12] E. Märki-Fischer, R. Buchecker, C. H. Eugster, G. Englert, K. Noack, M. Vecchi, Helv. Chim. Acta 1982, 65, 2198.
- [13] E. Rossiter, T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1981, 103, 464; V.S. Martin, S.S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, K. B. Sharpless, *ibid.* 1981, 103, 6237; T. Katsuki, K. B. Sharpless, *ibid.* 1980, 102, 5974; T. Oritani, K. Yamashita, Phytochemistry 1983, 22, 1909; R.M. Hanson, K. B. Sharpless, J. Org. Chem. 1986, 51, 1922; A. Pfenninger, Synthesis 1986, 89.
- [14] J.D. Surmatis, A. Walser, J. Gibas, R. Thommen, J. Org. Chem. 1970, 35, 1053.
- [15] E.C. Taylor, C.S. Chiang, Synthesis 1977, 467.
- [16] S. L. Huang, K. Omura, D. Swern, Synthesis 1978, 297.
- [17] H.F. Taylor, R.S. Burden, Nature (London) 1970, 302; R.S. Burden, H.F. Taylor, Tetrahedron Lett. 1970, 4071.
- [18] G. Ohloff, E. Otto, V. Rautenstrauch, G. Snatzke, Helv. Chim. Acta 1973, 56, 1874.
- [19] N. Harada, K. Nakanishi, 'Circular Dichroic Spectroscopy', University Science Books, Mill Valley, USA, 1983.
- [20] J. D. Surmatis, A. Ofner, J. Org. Chem. 1961, 26, 1171.
- [21] A. Zumbrunn, P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1985, 68, 1519.
- [22] a) H. Strain, Arch. Biochem. 1954, 48, 458; b) J.B. Moster, F. W. Quackenbush, J. W. Porter, *ibid.* 1952, 38, 287; c) A. L. Curl, G. F. Bailey, Food Res. 1957, 22, 323.

- [23] J. Szabolcs, Gy. Tóth, Acta Chim. Acad. Sci. Hung. 1970, 63, 229.
- [24] P. Molnár, J. Szabolcs, L. Radics, Phytochemistry 1986, 25, 195.
- [25] G.P. Moss, J. Szabolcs, Gy. Tóth, B.C.L. Weedon, Acta Chim. Acad. Sci. Hung. 1975, 87, 301.
- [26] P. Karrer, E. Jucker, 'Carotinoide', Birkhäuser, Basel, 1948.
- [27] P. Molnár, J. Szabolcs, Phytochemistry 1980, 19, 623.
- [28] R. Buchecker, C. H. Eugster, Helv. Chim. Acta 1979, 62, 2817.
- [29] T. Matsuno, M. Katsuyama, Bull. Jpn. Soc. Sci. Fisheries 1979, 45, 1533; T. Matsuno, T. Hirono, Y. Ikuno, T. Maoka, M. Shimizu, T. Komori, Comp. Biochem. Physiol. B 1986, 84, 477.
- [30] K. Schiedt, 'Absorption, Retention, and Metabolic Transformations of Carotenoids in Chicken, Salmonids, and Crustacea', Diss. Univ. Trondheim, Norway, 1987.
- [31] J.D. Albright, L. Goldman, J. Am. Chem. Soc. 1967, 89, 2416.
- [32] E. Märki-Fischer, R. Buchecker, C. H. Eugster, Helv. Chim. Acta 1984, 67, 2143.
- [33] J.A. Dale, D.L. Dull, H.S. Mosher, J. Org. Chem. 1969, 34, 2543.
- [34] H. Mayer, Pure Appl. Chem. 1979, 51, 535.
- [35] M. Takasugi, M. Anetai, N. Katsui, T. Masamune, Chem. Lett. 1973, 245.
- [36] K. Mori, Tetrahedron 1974, 30, 1065.
- [37] G. Weiss, M. Koreeda, K. Nakanishi, J. Chem. Soc., Chem. Commun. 1973, 565.
- [38] M. Mousseron-Canet, J.-C. Mani, J.-P. Dalle, J.-L. Olivé, Bull. Soc. Chim. Fr. 1966, 3874.
- [39] Y. Isogai, Y. Komoda, T. Okamoto, Chem. Pharm. Bull. Jpn. 1970, 18, 1872.
- [40] G.P. Moss, Pure Appl. Chem. 1976, 47, 97.
- [41] G. Englert, Pure Appl. Chem. 1985, 57, 801.
- [42] L. Radics, P. Molnár, J. Szabolcs, Phytochemistry 1983, 22, 306.
- [43] P. Molnár, L. Radics, J. Szabolcs, Acta Chim. Acad. Sci. Hung. 1983, 112, 477.